Two descent hybrid conjugate gradient methods for optimization. (English) Zbl 1142.65050

The aim of the paper is to study convergence and computational properties of two new descent hybrid conjugate gradient methods for nonlinear optimization problems consisting in the global minimization of a continuously differentiable function of \(n\) variables over \(\mathbb{R}^n\). The methods require no restarts and produce a sufficient descent search direction in each iteration. No convexity assumptions are required. The obtained results hold for functions with bounded level sets and bounded Lipschitz continuous gradients. The numerical results presented at the end of the paper show a good efficiency of the proposed methods.


65K05 Numerical mathematical programming methods
90C30 Nonlinear programming


Full Text: DOI


[1] Al-Baali, M., Descent property and global convergence of the Fletcher-Reeves method with inexact line search, IMA J. Numer. Anal., 5, 121-124 (1985) · Zbl 0578.65063
[3] Birgin, E.; Martínez, J. M., A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim., 43, 117-128 (2001) · Zbl 0990.90134
[4] Bongartz, K. E.; Conn, A. R.; Gould, N. I.M.; Toint, P. L., CUTE: constrained and unconstrained testing environments, ACM Trans. Math. Software, 21, 123-160 (1995) · Zbl 0886.65058
[5] Dai, Y. H.; Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10, 177-182 (1999) · Zbl 0957.65061
[6] Dai, Y. H.; Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained optimization, Ann. Oper. Res., 103, 33-47 (2001) · Zbl 1007.90065
[7] Dolan, E. D.; Moré, J. J., Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213 (2002) · Zbl 1049.90004
[8] Fletcher, R., Practical Methods of Optimization, Unconstrained Optimization, vol. I (1987), Wiley: Wiley New York · Zbl 0905.65002
[9] Fletcher, R.; Reeves, C., Function minimization by conjugate gradients, Comput. J., 7, 149-154 (1964) · Zbl 0132.11701
[10] Gilbert, J. C.; Nocedal, J., Global convergence properties of conjugate gradient methods for optimization, SIAM. J. Optim., 2, 21-42 (1992) · Zbl 0767.90082
[11] Hager, W. W.; Zhang, H., A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16, 170-192 (2005) · Zbl 1093.90085
[12] Hestenes, M. R.; Stiefel, E. L., Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards Section B, 49, 409-432 (1952) · Zbl 0048.09901
[13] Liu, Y. L.; Storey, C. S., Efficient generalized conjugate gradient algorithms, part 1: theory, J. Optim. Theory Appl., 69, 129-137 (1991) · Zbl 0702.90077
[14] Polak, B.; Ribiere, G., Note surla convergence des méthodes de directions conjuguées, Rev. Francaise Imformat Recherche Opertionelle, 16, 35-43 (1969) · Zbl 0174.48001
[15] Polyak, B. T., The conjugate gradient method in extreme problems, U.S.S.R. Comput. Math. and Math. Phys., 9, 94-112 (1969) · Zbl 0229.49023
[16] Powell, M. J.D., Nonconvex minimization calculations and the conjugate gradient method, Lecture Notes in Math., 1066, 121-141 (1984) · Zbl 0531.65035
[17] Touati-Ahmed, D.; Storey, C., Efficient hybrid conjugate gradient techniques, J. Optim. Theory Appl., 64, 379-397 (1990) · Zbl 0666.90063
[18] Wolfe, P., Convergence conditions for ascent methods, SIAM Rev., 11, 226-235 (1969) · Zbl 0177.20603
[20] Zhang, L.; Zhou, W. J.; Li, D. H., A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal., 26, 629-640 (2006) · Zbl 1106.65056
[21] Zhang, L.; Zhou, W. J.; Li, D. H., Global convergence of a modified Fletcher-Reeves conjugate method with Armijo-type line search, Numer. Math., 104, 561-572 (2006) · Zbl 1103.65074
[22] Zoutendijk, G., Nonlinear Programming, Computational Methods, (Abadie, J., Integer and Nonlinear Programming (1970), North-Holland: North-Holland Amsterdam), 37-86 · Zbl 0336.90057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.