zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two descent hybrid conjugate gradient methods for optimization. (English) Zbl 1142.65050
The aim of the paper is to study convergence and computational properties of two new descent hybrid conjugate gradient methods for nonlinear optimization problems consisting in the global minimization of a continuously differentiable function of $n$ variables over $\bbfR^n$. The methods require no restarts and produce a sufficient descent search direction in each iteration. No convexity assumptions are required. The obtained results hold for functions with bounded level sets and bounded Lipschitz continuous gradients. The numerical results presented at the end of the paper show a good efficiency of the proposed methods.

65K05Mathematical programming (numerical methods)
90C30Nonlinear programming
Full Text: DOI
[1] Al-Baali, M.: Descent property and global convergence of the fletcher -- reeves method with inexact line search, IMA J. Numer. anal. 5, 121-124 (1985) · Zbl 0578.65063 · doi:10.1093/imanum/5.1.121
[2] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization, Comput. Optim. Appl., to appear. · Zbl 1168.90608
[3] Birgin, E.; Martínez, J. M.: A spectral conjugate gradient method for unconstrained optimization, Appl. math. Optim. 43, 117-128 (2001) · Zbl 0990.90134 · doi:10.1007/s00245-001-0003-0
[4] Bongartz, K. E.; Conn, A. R.; Gould, N. I. M.; Toint, P. L.: CUTE: constrained and unconstrained testing environments, ACM trans. Math. software 21, 123-160 (1995) · Zbl 0886.65058 · doi:10.1145/200979.201043 · http://www.acm.org/pubs/contents/journals/toms/1995-21/
[5] Dai, Y. H.; Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10, 177-182 (1999) · Zbl 0957.65061 · doi:10.1137/S1052623497318992
[6] Dai, Y. H.; Yuan, Y.: An efficient hybrid conjugate gradient method for unconstrained optimization, Ann. oper. Res. 103, 33-47 (2001) · Zbl 1007.90065 · doi:10.1023/A:1012930416777
[7] Dolan, E. D.; Moré, J. J.: Benchmarking optimization software with performance profiles, Math. program. 91, 201-213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
[8] Fletcher, R.: Practical methods of optimization, unconstrained optimization, Practical methods of optimization, unconstrained optimization (1987) · Zbl 0905.65002
[9] Fletcher, R.; Reeves, C.: Function minimization by conjugate gradients, Comput. J. 7, 149-154 (1964) · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[10] Gilbert, J. C.; Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim. 2, 21-42 (1992) · Zbl 0767.90082 · doi:10.1137/0802003
[11] Hager, W. W.; Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim. 16, 170-192 (2005) · Zbl 1093.90085 · doi:10.1137/030601880
[12] Hestenes, M. R.; Stiefel, E. L.: Methods of conjugate gradients for solving linear systems, J. res. Nat. bur. Standards section B 49, 409-432 (1952) · Zbl 0048.09901
[13] Liu, Y. L.; Storey, C. S.: Efficient generalized conjugate gradient algorithms, part 1: theory, J. optim. Theory appl. 69, 129-137 (1991) · Zbl 0702.90077 · doi:10.1007/BF00940464
[14] Polak, B.; Ribiere, G.: Note surla convergence des méthodes de directions conjuguées, Rev. francaise imformat recherche opertionelle 16, 35-43 (1969) · Zbl 0174.48001
[15] Polyak, B. T.: The conjugate gradient method in extreme problems, U.S.S.R. comput. Math. and math. Phys. 9, 94-112 (1969) · Zbl 0229.49023 · doi:10.1016/0041-5553(69)90035-4
[16] Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method, Lecture notes in math. 1066, 121-141 (1984) · Zbl 0531.65035
[17] Touati-Ahmed, D.; Storey, C.: Efficient hybrid conjugate gradient techniques, J. optim. Theory appl. 64, 379-397 (1990) · Zbl 0666.90063 · doi:10.1007/BF00939455
[18] Wolfe, P.: Convergence conditions for ascent methods, SIAM rev. 11, 226-235 (1969) · Zbl 0177.20603 · doi:10.1137/1011036
[19] L. Zhang, Nonlinear conjugate gradient methods for optimization problems, Ph.D. Thesis, College of Mathematics and Econometrics, Hunan University, Changsha, China, 2006.
[20] Zhang, L.; Zhou, W. J.; Li, D. H.: A descent modified polak-ribière-Polyak conjugate gradient method and its global convergence, IMA J. Numer. anal. 26, 629-640 (2006) · Zbl 1106.65056 · doi:10.1093/imanum/drl016
[21] Zhang, L.; Zhou, W. J.; Li, D. H.: Global convergence of a modified fletcher-reeves conjugate method with armijo-type line search, Numer. math. 104, 561-572 (2006) · Zbl 1103.65074 · doi:10.1007/s00211-006-0028-z
[22] Zoutendijk, G.: Nonlinear programming, computational methods, Integer and nonlinear programming, 37-86 (1970) · Zbl 0336.90057