zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rudiments of rough sets. (English) Zbl 1142.68549
Summary: Worldwide, there has been a rapid growth in interest in rough set theory and its applications in recent years. Evidence of this can be found in the increasing number of high-quality articles on rough sets and related topics that have been published in a variety of international journals, symposia, workshops, and international conferences in recent years. In addition, many international workshops and conferences have included special sessions on the theory and applications of rough sets in their programs. Rough set theory has led to many interesting applications and extensions. It seems that the rough set approach is fundamentally important in artificial intelligence and cognitive sciences, especially in research areas such as machine learning, intelligent systems, inductive reasoning, pattern recognition, mereology, knowledge discovery, decision analysis, and expert systems. In the article, we present the basic concepts of rough set theory and point out some rough set-based research directions and applications.

MSC:
68T37Reasoning under uncertainty
WorldCat.org
Full Text: DOI
References:
[1] Alpigini, J. J.; Peters, J. F.; Skowron, A.; Zhong, N.: Third international conference on rough sets and current trends in computing (RSCTC’2002), malvern, PA, October 14 -- 16, 2002. Lecture notes in artificial intelligence 2475 (2002) · Zbl 1001.00048
[2] A. An, Y. Huang, X. Huang, N. Cercone, Feature selection with rough sets for web page classification. In: Peters et al. [228], pp. 1 -- 13. · Zbl 1108.68607
[3] P. Apostoli, A. Kanda, Parts of the continuum: Towards a modern ontology of sciences, Technical Reports in Philosophical Logic, vol. 96 (1). The University of Toronto, Department of Philosophy, Toronto, Canada, 1999, Revised March, 1999.
[4] Ariew, R.; Garber, D.; Leibniz, G. W.: Philosophical essays. (1989)
[5] Balbiani, P.; Vakarelov, D.: A modal logic for indiscernibility and complementarity in information systems. Fundamenta informaticae 50, No. 3 -- 4, 243-263 (2002) · Zbl 1016.03026
[6] Banerjee, M.: Logic for rough truth. Fundamenta informaticae 71, No. 2 -- 3, 139-151 (2006) · Zbl 1094.03015
[7] M. Banerjee, M.K. Chakraborty, Rough set algebras. In: Pal et al. [194], pp. 157 -- 184.
[8] Banerjee, M.; Pal, S. K.: Roughness of a fuzzy set. Information sciences 93, No. 3 -- 4, 235-246 (1996) · Zbl 0879.04004
[9] J. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problems. In: Polkowski et al. [241], pp. 49 -- 88. · Zbl 0992.68197
[10] J. Bazan, A. Osmólski, A. Skowron, D. Śle¸zak, M. Szczuka, J. Wróblewski, Rough set approach to the survival analysis. In: Alpigini et al. [1], pp. 522 -- 529. · Zbl 1013.68833
[11] J. Bazan, A. Skowron, On-line elimination of non-relevant parts of complex objects in behavioral pattern identification. In: Pal et al. [189], pp. 720 -- 725.
[12] J.G. Bazan, A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski and Skowron [244], pp. 321 -- 365. · Zbl 1067.68711
[13] J.G. Bazan, H.S. Nguyen, A. Skowron, M. Szczuka, A view on rough set concept approximation. In: Wang et al. [350], pp. 181 -- 188. · Zbl 1026.68615
[14] J.G. Bazan, J.F. Peters, A. Skowron, Behavioral pattern identification through rough set modelling. In: Śle¸zak et al. [301], pp. 688 -- 697.
[15] Black, M.: Vagueness: an exercise in logical analysis. Philosophy of science 4, No. 4, 427-455 (1937)
[16] Brown, F.: Boolean reasoning. (1990) · Zbl 0719.03002
[17] E. Bryniarski, U. Wybraniec-Skardowska, Generalized rough sets in contextual spaces. In: Rough Sets and Data Mining -- Analysis of Imperfect Data. pp. 339 -- 354.
[18] Cantor, G.: Über eine eigenschaft des inbegriffes aller reellen algebraischen zahlen. Crelle’s journal für Mathematik 77, 258-263 (1874)
[19] Cantor, G.: Grundlagen einer allgemeinen mannigfaltigkeitslehre. (1883)
[20] Casti, R.; Varzi, A.: Parts and places. The structures of spatial representation. (1999)
[21] G. Cattaneo, Abstract approximation spaces for rough theories. In: Polkowski and Skowron [244], pp. 59 -- 98. · Zbl 0927.68087
[22] G. Cattaneo, D. Ciucci, Algebraic structures for rough sets. In: Peters et al. [228], pp. 208 -- 252. · Zbl 1109.68115
[23] Cattaneo, G.; Ciucci, D.; Giuntini, R.; Konig, M.: Algebraic structures related to many valued logical systems. Part I: Heyting -- wajsberg algebras. Fundamenta informaticae 63, No. 4, 331-355 (2004) · Zbl 1090.03035
[24] Cattaneo, G.; Ciucci, D.; Giuntini, R.; Konig, M.: Algebraic structures related to many valued logical systems. Part II: Equivalence among some widespread structures. Fundamenta informaticae 63, No. 4, 357-373 (2004) · Zbl 1092.03035
[25] Cercone, N.; Skowron, A.; Zhong, N.: Computational intelligence: an international journal. 17, No. 3 (2001)
[26] B.S. Chlebus, S.H. Nguyen, On finding optimal discretizations for two attributes. In: Polkowski and Skowron [243], pp. 537 -- 544.
[27] Chmielewski, M. R.; Grzymała-Busse, J. W.: Global discretization of continuous attributes as preprocessing for machine learning. International journal of approximate reasoning 15, No. 4, 319-331 (1996) · Zbl 0949.68560
[28] Cios, K.; Pedrycz, W.; Swiniarski, R.: Data mining methods for knowledge discovery. (1998) · Zbl 0912.68199
[29] Comer, S. D.: An algebraic approach to the approximation of information. Fundamenta informaticae 14, No. 4, 495-502 (1991) · Zbl 0727.68114
[30] Czyẓewski, A.: Automatic identification of sound source position employing neural networks and rough sets. Pattern recognition letters 24, No. 6, 921-933 (2003)
[31] Czyẓewski, A.; Królikowski, R.: Neuro-rough control of masking thresholds for audio signal enhancement. Neurocomputing 36, 5-27 (2001) · Zbl 1003.68639
[32] A. Czyżewski, M. Szczerba, B. Kostek, Musical phrase representation and recognition by means of neural networks and rough sets. In: Peters and Skowron [225], pp. 254 -- 278. · Zbl 1104.68758
[33] Demri, S.; Orłowska, E.: Incomplete information: structure, inference, complexity. Monographs in theoretical computer sience (2002) · Zbl 1016.68163
[34] Demri, S.; Sattler, U.: Automata-theoretic decision procedures for information logics. Fundamenta informaticae 53, No. 1, 1-22 (2002) · Zbl 1025.03021
[35] Demri, S.; Stepaniuk, J.: Computational complexity of multimodal logics based on rough sets. Fundamenta informaticae 44, No. 4, 373-396 (2000) · Zbl 0971.03023
[36] J. Deogun, V.V. Raghavan, A. Sarkar, H. Sever, Data mining: trends in research and development. In: Rough Sets and Data Mining -- Analysis of Imperfect Data, pp. 9 -- 46.
[37] P. Doherty, W. Łukaszewicz, A. Skowron, A. Szałas, Approximation transducers and trees: a technique for combining rough and crisp knowledge. In: Knowledge Engineering: A Rough Set Approach [38], pp. 189 -- 218.
[38] Doherty, P.; łukaszewicz, W.; Skowron, A.; Szałas, A.: Knowledge engineering: A rough set approach. Studies in fizziness and soft computing 202 (2006) · Zbl 1131.68107
[39] Dubois, D.; Prade, H.: Rough fuzzy sets and fuzzy rough sets. Fuzzy sets and systems 23, 3-18 (1987) · Zbl 0633.68099
[40] Dubois, D.; Prade, H.: Rough fuzzy sets and fuzzy rough sets. International journal of general systems 17, 191-209 (1990) · Zbl 0715.04006
[41] D. Dubois, H. Prade, Foreword. In: Rough Sets: Theoretical Aspects of Reasoning about Data [206].
[42] V. Dubois, M. Quafafou, Concept learning with approximation: rough version spaces. In: Alpigini et al. [1], pp. 239 -- 246. · Zbl 1013.68574
[43] Duda, R.; Hart, P.; Stork, R.: Pattern classification. (2002) · Zbl 0968.68140
[44] Dunin-Ke&cedil, B.; Plicz; Jankowski, A.; Skowron, A.; Szczuka, M.: Monitoring, security, and rescue tasks in multiagent systems (MSRAS’2004). Advances in soft computing (2005)
[45] Düntsch, I.: A logic for rough sets. Theoretical computer science 179, 427-436 (1997) · Zbl 0896.03050
[46] Düntsch, I.; Gediga, G.: Uncertainty measures of rough set prediction. Artificial intelligence 106, No. 1, 77-107 (1998) · Zbl 0909.68040
[47] Düntsch, I.; Gediga, G.: Rough set data analysis. Encyclopedia of computer science and technology 43, 281-301 (2000)
[48] Düntsch, I.; Gediga, G.: Rough set data analysis: A road to non-invasive knowledge discovery. (2000)
[49] Düntsch, I.; Orlowska, E.; Wang, H.: Algebras of approximating regions. Fundamenta informaticae 46, No. 1 -- 2, 71-82 (2001)
[50] Fan, T. -F.; Liau, C. -J.; Yao, Y.: On modal and fuzzy decision logics based on rough set theory. Fundamenta informaticae 52, No. 4, 323-344 (2002) · Zbl 1016.03027
[51] K. Farion, W. Michalowski, R. Słowiński, S. Wilk, S. Rubin, Rough set methodology in clinical practice: Controlled hospital trial of the MET system. In: Tsumoto et al. [337], pp. 805 -- 814. · Zbl 1103.68844
[52] Filip, H.: Nominal and verbal semantic structure: analogies and interactions. Language sciences 23, 453-501 (2000)
[53] Fine, K.: Vagueness, truth and logic. Synthese 30, 265-300 (1975) · Zbl 0311.02011
[54] Forrest, P.: Sets as mereological tropes. Metaphysical 3, 5-10 (2002)
[55] Frege, G.: Grundgesetzen der arithmetik. 2 (1903) · Zbl 34.0071.05
[56] Friedman, J. H.; Hastie, T.; Tibshirani, R.: The elements of statistical learning: data mining, inference, and prediction. (2001) · Zbl 0973.62007
[57] Gabbay, D. M.; Hogger, C. J.; Robinson, J. A.: Handbook of logic in artificial intelligence and logic programming. Nonmonotonic reasoning and uncertain reasoning 3 (1994) · Zbl 0804.03017
[58] Garcia-Molina, H.; Ullman, J.; Widom, J.: Database systems: the complete book. (2002)
[59] Gediga, G.; Düntsch, I.: Rough approximation quality revisited. Artificial intelligence 132, 219-234 (2001) · Zbl 0983.68194
[60] Gediga, G.; Düntsch, I.: Maximum consistency of incomplete data via non-invasive imputation. Artificial intelligence review 19, 93-107 (2003)
[61] G. Gediga, I. Düntsch, On model evaluation, indices of importance, and interaction values in rough set analysis. In: Pal et al. [194], pp. 251 -- 276.
[62] Gomolińska, A.: A comparative study of some generalized rough approximations. Fundamenta informaticae 51, No. 1 -- 2, 103-119 (2002) · Zbl 1023.03050
[63] Gomolińska, A.: A graded meaning of formulas in approximation spaces. Fundamenta informaticae 60, No. 1 -- 4, 159-172 (2004) · Zbl 1083.68119
[64] A. Gomolińska, Rough validity, confidence, and coverage of rules in approximation spaces. In: Peters and Skowron [226], pp. 57 -- 81. · Zbl 1117.68070
[65] Góra, G.; Wojna, A. G.: RIONA: A new classification system combining rule induction and instance-based learning. Fundamenta informaticae 51, No. 4, 369-390 (2002) · Zbl 1011.68114
[66] S. Greco, M. Inuiguchi, R. Słowiński, A new proposal for fuzzy rough approximations and gradual decision rule representation. In: Peters et al. [228], pp. 319 -- 342. · Zbl 1108.68609
[67] Greco, S.; Inuiguchi, M.; Słowiński, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International journal of approximate reasoning 41, No. 2, 179-211 (2006) · Zbl 1093.68114
[68] Greco, S.; Matarazzo, B.; Słowiński, R.: Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. Decision making: recent developments and worldwide applications, 295-316 (2000)
[69] Greco, S.; Matarazzo, B.; Słowiński, R.: Rough set theory for multicriteria decision analysis. European journal of operational research 129, No. 1, 1-47 (2001) · Zbl 1008.91016
[70] Greco, S.; Matarazzo, B.; Słowiński, R.: Data mining tasks and methods: classification: multicriteria classification. Handbook of KDD, 318-328 (2002)
[71] S. Greco, B. Matarazzo, R. Słowiński, Dominance-based rough set approach to knowledge discovery (I) -- general perspective, (ii) -- extensions and applications. In: Zhong and Liu [374], pp. 513 -- 552, 553 -- 612.
[72] Greco, S.; Pawlak, Z.; Słowiński, R.: Can Bayesian confirmation measures be useful for rough set decision rules?. Engineering applications of artificial intelligence 17, No. 4, 345-361 (2004)
[73] S. Greco, R. Słowiński, J. Stefanowski, M. Zurawski, Incremental versus non-incremental rule induction for multicriteria classification. In: Peters et al. [228], pp. 54 -- 62. · Zbl 1108.68610
[74] Grzymała-Busse, J. W.: Managing uncertainty in expert systems. (1990)
[75] J.W. Grzymała-Busse, LERS -- A system for learning from examples based on rough sets. In: Słowiński [305], pp. 3 -- 18.
[76] Grzymała-Busse, J. W.: Selected algorithms of machine learning from examples. Fundamenta informaticae 18, 193-207 (1993)
[77] Grzymała-Busse, J. W.: Classification of unseen examples under uncertainty. Fundamenta informaticae 30, No. 3 -- 4, 255-267 (1997)
[78] Grzymała-Busse, J. W.: A new version of the rule induction system LERS. Fundamenta informaticae 31, No. 1, 27-39 (1997) · Zbl 0882.68122
[79] J.W. Grzymała-Busse, Three strategies to rule induction from data with numerical attributes. In: Peters et al. [228], pp. 54 -- 62. · Zbl 1108.68611
[80] J.W. Grzymała-Busse, LERS -- A data mining system. In: Maimon and Rokach [138], pp. 1347 -- 1351.
[81] J.W. Grzymała-Busse, Rule induction. In: Maimon and Rokach [138], pp. 277 -- 294.
[82] J.W. Grzymała-Busse, W.J. Grzymała-Busse, Handling missing attribute values. In: Maimon and Rokach [138], pp. 37 -- 57.
[83] Grzymała-Busse, J. W.; Grzymała-Busse, W. J.; Goodwin, L. K.: Coping with missing attribute values based on closest fit in preterm birth data: a rough set approach. Computational intelligence: an international journal 17, No. 3, 425-434 (2001)
[84] J.W. Grzymaa-Busse, Z.S. Hippe, Data mining methods supporting diagnosis of melanoma, In: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS 2005), 23 -- 24 June 2005, Dublin, Ireland, IEEE Computer Society, 2005, pp. 371 -- 373.
[85] Grzymała-Busse, J. W.; Ziarko, W.: Data mining and rough set theory. Communications of the ACM 43, 108-109 (2000)
[86] Han, S.; Wang, J.: Reduct and attribute order. Journal of computer science and technology 19, No. 4, 429-449 (2004)
[87] Hempel, C. G.: Vagueness and logic. Philosophy of science 6, 163-180 (1939)
[88] S. Hirano, M. Inuiguchi, S. Tsumoto (Eds.). Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC’2001), Matsue, Shimane, Japan, May 20 -- 22, 2001, Bulletin of the International Rough Set Society, vol. 5(1 -- 2). International Rough Set Society, Matsue, Shimane, 2001.
[89] Hirano, S.; Tsumoto, S.: Rough representation of a region of interest in medical images. International journal of approximate reasoning 40, No. 1 -- 2, 23-34 (2005)
[90] Hu, X.; Cercone, N.: Learning in relational databases: a rough set approach. Computational intelligence: an international journal 11, No. 2, 323-338 (1995)
[91] Hu, X.; Cercone, N.: Data mining via discretization, generalization and rough set feature selection. Knowledge and information systems: an international journal 1, No. 1, 33-60 (1999)
[92] Hu, X.; Cercone, N.: Discovering maximal generalized decision rules through horizontal and vertical data reduction. Computational intelligence: an international journal 17, No. 4, 685-702 (2001)
[93] Hu, X.; Cercone, N.; Shan, N.: A rough set approach to compute all maximal generalized rules. Journal of computing and information 1, No. 1, 1078-1089 (1995)
[94] Hu, X.; Lin, T. Y.; Han, J.: A new rough set model based on database systems. Journal of fundamental informatics 59, No. 2 -- 3, 135-152 (2004) · Zbl 1098.68127
[95] Hvidsten, T. R.; Wilczyński, B.; Kryshtafovych, A.; Tiuryn, J.; Komorowski, J.; Fidelis, K.: Discovering regulatory binding-site modules using rule-based learning. Genome research 6, No. 15, 856-866 (2005)
[96] M. Inuiguchi, Generalizations of rough sets: from crisp to fuzzy cases. In: Tsumoto et al. [337], pp. 26 -- 37 (plenary talk). · Zbl 1103.03048
[97] Inuiguchi, M.; Hirano, S.; Tsumoto, S.: Rough set theory and granular computing. Studies in fuzziness and soft computing 125 (2003) · Zbl 1054.68696
[98] T. Iwiński, Rough analysis of lattices, Working papers, vol. 23. University of Carlos III, Madrid, 1991.
[99] J. Järvinen, Representation of information systems and dependence spaces, and some basic algorithms. Licentiate’s thesis. Ph.D. thesis, University of Turku, Department of Mathematics, Turku, Finland, 1997.
[100] Järvinen, J.: On the structure of rough approximations. Fundamenta informaticae 53, No. 2, 135-153 (2002)
[101] Jech, T.: Set theory. (1997) · Zbl 0882.03045
[102] Jelonek, J.; Stefanowski, J.: Feature subset selection for classification of histological images. Artificial intelligence in medicine 9, No. 3, 227-239 (1997)
[103] Jensen, R.; Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough approaches. IEEE transactions on knowledge and data engineering 16, No. 2, 1457-1471 (2004)
[104] R. Jensen, Q. Shen, A. Tuso, Finding rough set reducts with SAT. In: Śle¸zak et al. [300], pp. 194 -- 203. · Zbl 1134.68538
[105] R. Keefe, Theories of Vagueness. Cambridge Studies in Philosophy, Cambridge, UK, 2000.
[106] Keefe, R.; Smith, P.: Vagueness: A reader. (1997)
[107] Kim, D.: Data classification based on tolerant rough set. Pattern recognition 34, No. 8, 1613-1624 (2001) · Zbl 0984.68520
[108] Kim, D.; Bang, S. Y.: A handwritten numeral character classification using tolerant rough set. IEEE transactions on pattern analysis and machine intelligence 22, No. 9, 923-937 (2000)
[109] Kloesgen, W.; &zdot, J.; Ytkow: Handbook of knowledge discovery and data mining. (2002)
[110] J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron, Rough sets: a tutorial. In: Pal and Skowron [195], pp. 3 -- 98.
[111] B. Kostek, Soft computing-based recognition of musical sounds. In: Polkowski and Skowron [245], pp. 193 -- 213.
[112] Kostek, B.: Soft computing in acoustics, applications of neural networks, fuzzy logic and rough sets to physical acoustics. Studies in fuzziness and soft computing 31 (1999) · Zbl 1044.68919
[113] Kostek, B.: Perception-based data processing in acoustics: applications to music information retrieval and psychophysiology of hearing. Studies in computational intelligence 3 (2005)
[114] B. Kostek, A. Czyżewski, Processing of musical metadata employing Pawlak’s flow graphs. In: Peters and Skowron [225], pp. 279 -- 298. · Zbl 1104.68763
[115] B. Kostek, P. Szczuko, P. Żwan, P. Dalka, Processing of musical data employing rough sets and artificial neural networks. In: Peters and Skowron [226], pp. 112 -- 133. · Zbl 1116.68584
[116] M. Kryszkiewicz, Maintenance of reducts in the varable precision rough set model. In: Rough Sets and Data Mining -- Analysis of Imperfect Data. pp. 355 -- 372.
[117] M. Kryszkiewicz, Properties of incomplete information systems in the framework of rough sets. In: Polkowski and Skowron [244], pp. 422 -- 450. · Zbl 0940.68138
[118] Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information sciences 112, No. 1 -- 4, 39-49 (1998) · Zbl 0951.68548
[119] Kryszkiewicz, M.: Rules in incomplete information systems. Information sciences 113, No. 3 -- 4, 271-292 (1999) · Zbl 0948.68214
[120] M. Kryszkiewicz, K. Cichoń, Towards scalable algorithms for discovering rough set reducts. In: Peters et al. [228], pp. 120 -- 143. · Zbl 1104.68764
[121] Lægreid, A.; Hvidsten, T. R.; Midelfart, H.; Komorowski, J.; Sandvik, A. K.: Discovering regulatory binding-site modules using rule-based learning. Genome researche 5, No. 13, 965-979 (2003)
[122] Latkowski, R.: On decomposition for incomplete data. Fundamenta informaticae 54, No. 1, 1-16 (2003) · Zbl 1146.68460
[123] Latkowski, R.: Flexible indiscernibility relations for missing attribute values. Fundamenta informaticae 67, No. 1 -- 3, 131-147 (2005) · Zbl 1096.68149
[124] A.O.V. Le Blanc, Lesniewski’s Computative Protothetic. Report (Ph.D. thesis), University of Manchester, Manchester, UK, 2003.
[125] G.W. Leibniz, Discourse on metaphysics. In: Ariew and Garber [4], pp. 35 -- 68.
[126] Leśniewski, S.: Grungzüge eines neuen systems der grundlagen der Mathematik. Fundamenta mathematicae 14, 1-81 (1929) · Zbl 55.0626.03
[127] Li, Y.; Shiu, S. C. -K.; Pal, S. K.; Liu, J. N. -K.: A rough set-based case-based reasoner for text categorization. International journal of approximate reasoning 41, No. 2, 229-255 (2006)
[128] Lin, T. Y.: Neighborhood systems and approximation in database and knowledge base systems. Proceedings of the fourth international symposium on methodologies of intelligent systems (Poster session), October 12 -- 15, 1989, 75-86 (1989)
[129] Lin, T. Y.: Journal of the intelligent automation and soft computing. 2, No. 2 (1996)
[130] Lin, T. Y.; Wildberger, A. M.: Soft computing: rough sets, fuzzy logic, neural networks, uncertainty management, knowledge discovery. (1995)
[131] Lin, T. Y.; Yao, Y. Y.; Zadeh, L. A.: Rough sets, granular computing and data mining. Studies in fuzziness and soft computing (2001) · Zbl 0983.00027
[132] Lingras, P.: Fuzzy -- rough and rough -- fuzzy serial combinations in neuro-computing. Neurocomputing 36, No. 1 -- 4, 29-44 (2001) · Zbl 1003.68637
[133] Lingras, P.: Unsupervised rough set classification using gas. Journal of intelligent information systems 16, No. 3, 215-228 (2001) · Zbl 1016.68112
[134] Lingras, P.; Davies, C.: Application of rough genetic algorithms. Computational intelligence: an international journal 17, No. 3, 435-445 (2001)
[135] Lingras, P.; West, C.: Interval set clustering of web users with rough K-means. Journal of intelligent information systems 23, No. 1, 5-16 (2004) · Zbl 1074.68586
[136] Liu, C.; Zhong, N.: Rough problem settings for ILP dealing with imperfect data. Computational intelligence: an international journal 17, No. 3, 446-459 (2001)
[137] łukasiewicz, J.: Die logischen grundlagen der wahrscheinlichkeitsrechnung, 1913. Ján łukasiewicz -- selected works, 16-63 (1970)
[138] Maimon, O.; Rokach, L.: The data mining and knowledge discovery handbook. (2005) · Zbl 1087.68029
[139] J. Małuszyński, A. Vitória, Toward rough datalog. In: Pal et al. [194], pp. 297 -- 332.
[140] S. Marcus, The paradox of the heap of grains, in respect to roughness, fuzziness and negligibility. In: Polkowski and Skowron [243], pp. 19 -- 23. · Zbl 0907.03006
[141] Marek, V. W.; Rasiowa, H.: Approximating sets with equivalence relations. Theoretical computer science 48, No. 3, 145-152 (1986) · Zbl 0638.68066
[142] Marek, V. W.; Truszczyński, M.: Contributions to the theory of rough sets. Fundamenta informaticae 39, No. 4, 389-409 (1999) · Zbl 0944.68051
[143] Menasalvas, E.; Wasilewska, A.: Data mining as generalization: a formal model. Foundations and novel approaches in data mining, computational intelligence, 99-126 (2006)
[144] H. Midelfart, Supervised learning in the gene ontology. Part I: rough set framework. Part II: a bottom-up algorithm. In: Peters and Skowron [227], pp. 69 -- 97, 98 -- 124. · Zbl 1136.68493
[145] Midelfart, H.; Komorowski, J.; Nørsett, K.; Yadetie, F.; Sandvik, A. K.; Lægreid, A.: Learning rough set classifiers from gene expression and clinical data. Fundamenta informaticae 2, No. 53, 155-183 (2004) · Zbl 1011.92025
[146] Mill, J. S.: Ratiocinative and inductive, being a connected view of the principles of evidence, and the methods of scientific investigation. (1862)
[147] Mitchel, T. M.: Machine learning. Computer science (1999)
[148] P. Mitra, S. Mitra, S.K. Pal, Modular rough fuzzy mlp: Evolutionary design. In: Skowron et al. [280], pp. 128 -- 136.
[149] Mitra, P.; Pal, S. K.; Siddiqi, M. A.: Non-convex clustering using expectation maximization algorithm with rough set initialization. Pattern recognition letters 24, No. 6, 863-873 (2003) · Zbl 1053.68098
[150] S. Mitra, Computational intelligence in bioinformatics. In: Peters and Skowron [226], pp. 134 -- 152. · Zbl 1116.68572
[151] Mitra, S.; Acharya, T.: Data mining. Multimedia, soft computing, and bioinformatics. (2003)
[152] Miyamoto, S.: Application of rough sets to information retrieval. Journal of the American society for information science 49, No. 3, 195-220 (1998)
[153] Miyamoto, S.: Generalizations of multisets and rough approximations. International journal of intelligent systems 19, No. 7, 639-652 (2004) · Zbl 1101.68524
[154] M.J. Moshkov, Time complexity of decision trees. In: Peters and Skowron [226], pp. 244 -- 459. · Zbl 1117.68071
[155] M.J. Moshkov, M. Piliszczuk, On partial tests and partial reducts for decision tables. In: Śle¸zak et al. [300], pp. 149 -- 155. · Zbl 1134.68498
[156] A. Mrózek, Rough sets in computer implementation of rule-based control of industrial processes. In: Słowiński [305], pp. 19 -- 31.
[157] T. Munakata, Rough control: a perspective. In: Rough Sets and Data Mining -- Analysis of Imperfect Data, pp. 77 -- 88.
[158] M. Muraszkiewicz, H. Rybiński, Towards a parallel rough sets computer. In: Ziarko [376], pp. 434 -- 443. · Zbl 0941.68569
[159] Nakamura, A.: Fuzzy quantifiers and rough quantifiers. Advances in fuzzy theory and technology II, 111-131 (1994)
[160] A. Nakamura, On a logic of information for reasoning about knowledge. In: Ziarko [376], pp. 186 -- 195. · Zbl 0939.68835
[161] Nakamura, A.: A rough logic based on incomplete information and its application. International journal of approximate reasoning 15, No. 4, 367-378 (1996) · Zbl 0935.03045
[162] Nguyen, H. S.: On the decision table with maximal number of reducts. Electronic notes in theoretical computer science 82, No. 4 (2003) · Zbl 1270.68319
[163] H.S. Nguyen, Approximate boolean reasoning approach to rough sets and data mining. In: Śle¸zak et al. [301], pp. 12 -- 22 (plenary talk).
[164] Nguyen, H. S.; Nguyen, S. H.: Rough sets and association rule generation. Fundamenta informaticae 40, No. 4, 383-405 (1999) · Zbl 0946.68153
[165] H.S. Nguyen, D. Śle¸zak. Approximate reducts and association rules -- correspondence and complexity results. In: Skowron et al. [280], pp. 137 -- 145.
[166] S.H. Nguyen, Regularity analysis and its applications in data mining. In: Polkowski et al. [241], pp. 289 -- 378. · Zbl 0992.68049
[167] S.H. Nguyen, J. Bazan, A. Skowron, H.S. Nguyen, Layered learning for concept synthesis. In: Peters and Skowron [225], pp. 187 -- 208. · Zbl 1104.68565
[168] S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods. In: Sixth International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems IPMU’1996, Granada, Spain, 1996, vol. III, pp. 1451 -- 1456.
[169] T.T. Nguyen, Eliciting domain knowledge in handwritten digit recognition. In: Pal et al. [189], pp. 762 -- 767.
[170] T.T. Nguyen, A. Skowron, Rough set approach to domain knowledge approximation. In: Wang et al. [350], pp. 221 -- 228. · Zbl 1026.68644
[171] T. Nishino, M. Nagamachi, H. Tanaka, Variable precision Bayesian rough set model and its application to human evaluation data. In: Śle¸zak et al. [300], pp. 294 -- 303. · Zbl 1134.68549
[172] Norsett, K. G.; Lægreid, A.; Midelfart, H.; Yadetie, F.; Erlandsen, S. E.; Falkmer, S.; Gronbech, J. E.; Waldum, H. L.; Komorowski, J.; Sandvik, A. K.: Gene expression based classification of gastric carcinoma. Cancer letters 2, No. 210, 227-237 (2004)
[173] Novotný, M.; Pawlak, Z.: Algebraic theory of independence in information systems. Fundamenta informaticae 14, No. 4, 454-476 (1991) · Zbl 0727.68118
[174] Novotný, M.; Pawlak, Z.: Algebraic theory of independence in information systems. Fundamenta informaticae 14, 454-476 (1991) · Zbl 0727.68118
[175] Novotný, M.; Pawlak, Z.: On a problem concerning dependence space. Fundamenta informaticae 16, 275-287 (1992) · Zbl 0762.68059
[176] C.-S. Ong, J.-J. Huang, G.-H. Tzeng, Using rough set theory for detecting the interaction terms in a generalized logit model. In: Tsumoto et al. [337], pp. 624 -- 629. · Zbl 1103.68866
[177] Orłowska, E.: Semantics of vague concepts. Foundation of logic and linguistics, 465-482 (1984)
[178] E. Orłowska, Rough concept logic. In: Skowron [272], pp. 177 -- 186.
[179] Orłowska, E.: Reasoning about vague concepts. Bulletin of the Polish Academy of sciences, mathematics 35, 643-652 (1987) · Zbl 0641.68160
[180] Orłowska, E.: Logic for reasoning about knowledge. Zeitschrift für mathematische logik und grundlagen der Mathematik 35, 559-572 (1989)
[181] Orłowska, E.: Kripke semantics for knowledge representation logics. Studia logica 49, No. 2, 255-272 (1990) · Zbl 0726.03023
[182] Orowska, E.: Incomplete information: rough set analysis. Studies in fuzziness and soft computing 13 (1997)
[183] E. Orłowska, Z. Pawlak, Expressive power of knowledge representation system. Technical Report, Institute of Computer Science, Polish Academy of Sciences 432. · Zbl 0541.68070
[184] Orłowska, E.; Pawlak, Z.: Representation of non -- deterministic information. Theoretical computer science 29, 27-39 (1984) · Zbl 0537.68098
[185] Pagliani, P.: From concept lattices to approximation spaces: algebraic structures of some spaces of partial objects. Fundamenta informaticae 18, 1-25 (1993) · Zbl 0776.06005
[186] Pagliani, P.: Rough sets and Nelson algebras. Fundamenta informaticae 27, No. 2 -- 3, 205-219 (1996) · Zbl 0858.68110
[187] Pagliani, P.: Pretopologies and dynamic spaces. Fundamenta informaticae 59, No. 2 -- 3, 221-239 (2004) · Zbl 1098.68131
[188] Pal, S. K.: Soft data mining, computational theory of perceptions, and rough-fuzzy approach. Information sciences 163, No. 1 -- 3, 5-12 (2004)
[189] Pal, S. K.; Bandoyopadhay, S.; Biswas, S.: Proceedings of the first international conference on pattern recognition and machine intelligence (PReMI 2005), December 18 -- 22, 2005. Lecture notes in computer science 3776 (2005)
[190] Pal, S. K.; Dasgupta, B.; Mitra, P.: Rough self organizing map. Applied intelligence 21, 289-299 (2004) · Zbl 1101.68825
[191] Pal, S. K.; Mitra, P.: Case generation using rough sets with fuzzy representation. IEEE transactions on knowledge and data engineering 16, No. 3, 292-300 (2004)
[192] Pal, S. K.; Mitra, P.: Pattern recognition algorithms for data mining. (2004) · Zbl 1099.68091
[193] Pal, S. K.; Pedrycz, W.; Skowron, A.; Swiniarski, R.: Rough-neuro computing, neurocomputing. 36 (2001)
[194] Pal, S. K.; Polkowski, L.; Skowron, A.: Rough-neural computing: techniques for computing with words. Cognitive technologies (2004) · Zbl 1040.68113
[195] Pal, S. K.; Skowron, A.: Rough fuzzy hybridization: A new trend in decision-making. (1999) · Zbl 0941.68129
[196] Pancerz, K.; Suraj, Z.: Discovering concurrent models from data tables with the ROSECON system. Fundamenta informaticae 60, No. 1 -- 4, 251-268 (2004) · Zbl 1086.68560
[197] Paun, G.; Polkowski, L.; Skowron, A.: Rough set approximation of languages. Fundamenta informaticae 32, 149-162 (1997) · Zbl 0891.68054
[198] Z. Pawlak, Rough real functions and rough controllers. In: Rough Sets and Data Mining -- Analysis of Imperfect Data, pp. 139 -- 147. · Zbl 0866.93063
[199] Z. Pawlak, Classification of Objects by Means of Attributes, Reports, vol. 429. Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland, 1981.
[200] Pawlak, Z.: Information systems -- theoretical foundations. Information systems 6, 205-218 (1981) · Zbl 0462.68078
[201] Z. Pawlak, Rough Relations, Reports, vol. 435. Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland, 1981. · Zbl 0516.04001
[202] Pawlak, Z.: Rough sets. International journal of computer and information sciences 11, 341-356 (1982) · Zbl 0501.68053
[203] Pawlak, Z.: Rough classification. International journal of man-machine studies 20, No. 5, 469-483 (1984) · Zbl 0541.68077
[204] Pawlak, Z.: Rough logic. Bulletin of the Polish Academy of sciences, technical sciences 35, No. 5 -- 6, 253-258 (1987)
[205] Pawlak, Z.: Decision logic. Bulletin of the EATCS 44, 201-225 (1991) · Zbl 0744.68118
[206] Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, system theory. Knowledge engineering and problem solving 9 (1991) · Zbl 0758.68054
[207] Pawlak, Z.: Concurrent versus sequential -- the rough sets perspective. Bulletin of the EATCS 48, 178-190 (1992) · Zbl 1023.68640
[208] Z. Pawlak, Decision rules, Bayes’ rule and rough sets. In: Skowron et al. [280], pp. 1 -- 9.
[209] Z. Pawlak, A treatise on rough sets. In: Peters and Skowron [227], pp. 1 -- 17. · Zbl 1136.68535
[210] Z. Pawlak, A. Skowron, Rough sets: Some extensions, Information Sciences, in press, doi:10.1016/j.ins.2006.06.006. · Zbl 1142.68550
[211] Z. Pawlak, L. Polkowski, A. Skowron, Rough sets and rough logic: a KDD perspective. In: Polkowski et al. [241], pp. 583 -- 646. · Zbl 1009.68159
[212] Pawlak, Z.; Skowron, A.: A rough set approach for decision rules generation. Thirteenth international joint conference on artificial intelligence IJCAI’1993, 114-119 (1993)
[213] Pawlak, Z.; Skowron, A.: Rough membership functions. Advances in the Dempster -- Shafer theory of evidence, 251-271 (1994)
[214] Z. Pawlak, A. Skowron, Rough sets and boolean reasoning, Information Sciences, in press, doi:10.1016/j.ins.2006.06.007. · Zbl 1142.68551
[215] Pawlak, Z.; Słowiński, K.; Słowiński, R.: Rough classification of patients after highly selective vagotomy for duodenal ulcer. International journal of man-machine studies 24, No. 5, 413-433 (1986)
[216] Pawlak, Z.; Wong, S. K. M.; Ziarko, W.: Rough sets: probabilistic versus deterministic approach. Machine learning and uncertain reasoning 3, 227-242 (1990) · Zbl 0663.68094
[217] Pedrycz, W.; Han, L.; Peters, J. F.; Ramanna, S.; Zhai, R.: Calibration of software quality: fuzzy neural and rough neural computing approaches. Neurocomputing 36, No. 1 -- 4, 149-170 (2001) · Zbl 1003.68635
[218] Peters, J.; Skowron, A.: A rough set approach to reasoning about data. International journal of intelligent systems 16, No. 1 (2001) · Zbl 0967.00024
[219] J.F. Peters, Rough ethology: Towards a biologically-inspired study of collective behavior in intelligent systems with approximation spaces. In: Peters and Skowron [226], pp. 153 -- 174. · Zbl 1116.68574
[220] Peters, J. F.; Han, L.; Ramanna, S.: Rough neural computing in signal analysis. Computational intelligence: an international journal 17, No. 3, 493-513 (2001)
[221] Peters, J. F.; Henry, C.: Reinforcement learning with approximation spaces. Fundamenta informaticae 71, 1-27 (2006) · Zbl 1095.68650
[222] Peters, J. F.; Ramanna, S.: Towards a software change classification system: A rough set approach. Software quality journal 11, No. 2, 121-147 (2003)
[223] J.F. Peters, S. Ramanna, Approximation space for software models. In: Peters et al. [228], pp. 338 -- 355. · Zbl 1104.68770
[224] J.F. Peters, S. Ramanna, M.S. Szczuka, Towards a line-crawling robot obstacle classification system: a rough set approach. In: Wang et al. [350], pp. 303 -- 307. · Zbl 1026.68647
[225] Peters, J. F.; Skowron, A.: Transactions on rough sets I: Journal subline. Lecture notes in computer science 3100 (2004)
[226] Peters, J. F.; Skowron, A.: Transactions on rough sets III: Journal subline. Lecture notes in computer science 3400 (2005)
[227] Peters, J. F.; Skowron, A.: Transactions on rough sets IV: Journal subline. Lecture notes in computer science 3700 (2005)
[228] Peters, J. F.; Skowron, A.; Dubois, D.; Grzymała-Busse, J. W.; Inuiguchi, M.; Polkowski, L.: Transactions on rough sets II. Rough sets and fuzzy sets: journal subline. Lecture notes in computer science 3135 (2004) · Zbl 1062.68008
[229] Peters, J. F.; Skowron, A.; Suraj, Z.: An application of rough set methods in control design. Fundamenta informaticae 43, No. 1 -- 4, 269-290 (2000) · Zbl 0971.93052
[230] Peters, J. F.; Skowron, A.; Synak, P.; Ramanna, S.: Rough sets and information granulation. Lecture notes in artificial intelligence 2715, 370-377 (2003) · Zbl 1037.68753
[231] Peters, J. F.; Suraj, Z.; Shan, S.; Ramanna, S.; Pedrycz, W.; Pizzi, N. J.: Classification of meteorological volumetric radar data using rough set methods. Pattern recognition letters 24, No. 6, 911-920 (2003)
[232] J.F. Peters, M.S. Szczuka, Rough neurocomputing: A survey of basic models of neurocomputation. In: Alpigini et al. [1], pp. 308 -- 315. · Zbl 1013.68521
[233] J.F. Peters, K. Ziaei, S. Ramanna, Approximate time rough control: Concepts and application to satellite attitude control. In: Polkowski and Skowron [243], pp. 491 -- 498.
[234] Pindur, R.; Susmaga, R.; Stefanowski, J.: Hyperplane aggregation of dominance decision rules. Fundamenta informaticae 61, No. 2, 117-137 (2004) · Zbl 1083.68121
[235] L. Polkowski, On convergence of rough sets. In: Słowiński [305], pp. 305 -- 311. · Zbl 1012.68218
[236] Polkowski, L.: On fractal dimension in information systems. Toward exact sets in infinite information systems. Fundamenta informaticae 50, No. 3 -- 4, 305-314 (2002) · Zbl 1012.68218
[237] Polkowski, L.: Rough sets: mathematical foundations. Advances in soft computing (2002) · Zbl 1040.68114
[238] Polkowski, L.: Rough mereology: A rough set paradigm for unifying rough set theory and fuzzy set theory. Fundamenta informaticae 54, 67-88 (2003) · Zbl 1031.03069
[239] Polkowski, L.: A note on 3-valued rough logic accepting decision rules. Fundamenta informaticae 61, No. 1, 37-45 (2004) · Zbl 1083.68116
[240] L. Polkowski, Toward rough set foundations. mereological approach. In: Tsumoto et al. [337], pp. 8 -- 25. (plenary talk). · Zbl 1103.03049
[241] Polkowski, L.; Lin, T. Y.; Tsumoto, S.: Rough set methods and applications: new developments in knowledge discovery in information systems. Studies in fuzziness and soft computing 56 (2000) · Zbl 0979.00021
[242] Polkowski, L.; Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International journal of approximate reasoning 15, No. 4, 333-365 (1996) · Zbl 0938.68860
[243] Polkowski, L.; Skowron, A.: First international conference on rough sets and soft computing RSCTC’1998. Lecture notes in artificial intelligence 1424 (1998) · Zbl 0891.00026
[244] Polkowski, L.; Skowron, A.: Rough sets in knowledge discovery 1: methodology and applications. Studies in fuzziness and soft computing 18 (1998) · Zbl 0910.00028
[245] Polkowski, L.; Skowron, A.: Rough sets in knowledge discovery 2: applications, case studies and software systems. Studies in fuzziness and soft computing 19 (1998) · Zbl 0910.00029
[246] L. Polkowski, A. Skowron, Rough mereology in information systems. a case study: Qualitative spatial reasoning. In: Polkowski et al. [241], pp. 89 -- 135. · Zbl 0992.68198
[247] Polkowski, L.; Skowron, A.: Rough mereological calculi of granules: a rough set approach to computation. Computational intelligence: an international journal 17, No. 3, 472-492 (2001)
[248] Pomykała, J.; Pomykała, J. A.: The stone algebra of rough sets. Bulletin of the Polish Academy of sciences, mathematics 36, 495-508 (1988) · Zbl 0786.04008
[249] G.-F. Qiu, W.-X. Zhang, W.-Z. Wu, Characterizations of attributes in generalized approximation representation spaces. In: Śle¸zak et al. [300], pp. 84 -- 93.
[250] Quafafou, M.; Boussouf, M.: Generalized rough sets based feature selection. Intelligent data analysis 4, No. 1, 3-17 (2000) · Zbl 1055.68560
[251] Radzikowska, A.; Kerre, E. E.: A comparative study of fuzzy rough sets. Fuzzy sets and systems 126, No. 2, 137-155 (2002) · Zbl 1004.03043
[252] A. Radzikowska, E.E. Kerre, Fuzzy rough sets based on residuated lattices. In: Peters et al. [228], pp. 278 -- 296. · Zbl 1109.68118
[253] Ras, Z. W.: Reducts-driven query answering for distributed autonomous knowledge systems. International journal of intelligent systems 17, No. 2, 113-124 (2002) · Zbl 1012.68014
[254] Z.W. Ras, A. Dardzinska, Collaborative query processing in DKS controlled by reducts. In: Alpigini et al. [1], pp. 189 -- 196. · Zbl 1013.68573
[255] Rasiowa, H.: Axiomatization and completeness of uncountably valued approximation logic. Studia logica 53, No. 1, 137-160 (1994) · Zbl 0787.03015
[256] Rasiowa, H.; Skowron, A.: Approximation logic. Mathematical research 31, 123-139 (1985) · Zbl 0611.68006
[257] H. Rasiowa, A. Skowron, Rough concept logic. In: Skowron [272], pp. 288 -- 297. · Zbl 0611.68006
[258] C. Rauszer, An equivalence between indiscernibility relations in information systems and a fragment of intuitionistic logic. In: Skowron [272], pp. 298 -- 317. · Zbl 0609.68076
[259] Rauszer, C.: An equivalence between theory of functional dependence and a fragment of intuitionistic logic. Bulletin of the Polish Academy of sciences, mathematics 33, 571-579 (1985) · Zbl 0583.68054
[260] Rauszer, C.: Logic for information systems. Fundamenta informaticae 16, 371-382 (1992) · Zbl 0768.68199
[261] Rauszer, C.: Knowledge representation systems for groups of agents. Philosophical logic in Poland, 217-238 (1994)
[262] Read, S.: Thinking about logic: an introduction to the philosophy of logic. (1994)
[263] Rissanen, J.: Modeling by shortes data description. Automatica 14, 465-471 (1978) · Zbl 0418.93079
[264] Rissanen, J.: Minimum-description-length principle. Encyclopedia of statistical sciences, 523-527 (1985)
[265] Roy, A.; Pal, S. K.: Fuzzy discretization of feature space for a rough set classifier. Pattern recognition letters 24, No. 6, 895-902 (2003) · Zbl 1053.68091
[266] Russell, B.: The principles of mathematics. (1903) · Zbl 34.0062.14
[267] Russell, B.: Vagueness. The australian journal of psychology and philosophy 1, 84-92 (1923)
[268] Russell, B.: An inquiry into meaning and truth. (1940)
[269] Sever, H.; Raghavan, V. V.; Johnsten, T. D.: The status of research on rough sets for knowledge discovery in databases. Proceedings of the second internationall conference on nonlinear problems in aviation and aerospace (ICNPAA’1998), April 29 -- May 1, 1998, daytona beach, FL 2, 673-680 (1998)
[270] Shan, N.; Ziarko, W.: An incremental learning algorithm for constructing decision rules. Rough sets, fuzzy sets and knowledge discovery, 326-334 (1994) · Zbl 0941.68698
[271] Simons, P.: A study in ontology. (1987)
[272] Skowron, A.: Proceedings of the 5th symposium on computation theory, zaborów, Poland, 1984. Lecture notes in computer science 208 (1985)
[273] Skowron, A.: Boolean reasoning for decision rules generation. Lecture notes in artificial intelligence 689, 295-305 (1993)
[274] Skowron, A.: Extracting laws from decision tables. Computational intelligence: an international journal 11, 371-388 (1995)
[275] Skowron, A.: Rough sets in KDD -- plenary talk. 16th world computer congress (IFIP’2000): Proceedings of conference on intelligent information processing (IIP’2000), 1-14 (2000)
[276] Skowron, A.: Rough sets and Boolean reasoning. Studies in fuzziness and soft computing 70, 95-124 (2001) · Zbl 0986.68143
[277] A. Skowron, Approximate reasoning in distributed environments. In: Zhong and Liu [374], pp. 433 -- 474.
[278] Skowron, A.: Rough sets and vague concepts. Fundamenta informaticae 64, No. 1 -- 4, 417-431 (2005) · Zbl 1102.68131
[279] Skowron, A.; Grzymała-Busse, J. W.: From rough set theory to evidence theory. Advances in the Dempster -- Shafer theory of evidence, 193-236 (1994)
[280] A. Skowron, S. Ohsuga, N. Zhong (Eds.). Proceedings of the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’99), Yamaguchi, November 9 -- 11, 1999, Lecture Notes in Artificial Intelligence, vol. 1711, Springer-Verlag, Heidelberg, 1999. · Zbl 0929.00075
[281] Skowron, A.; Pal, S. K.: Rough sets, pattern recognition and data mining. Pattern recognition letters 24, No. 6 (2003)
[282] Skowron, A.; Pawlak, Z.; Komorowski, J.; Polkowski, L.: A rough set perspective on data and knowledge. Handbook of KDD, 134-149 (2002)
[283] A. Skowron, J. Peters, Rough sets: trends and challenges. In: Wang et al. [350], pp. 25 -- 34 (plenary talk). · Zbl 1026.68653
[284] A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems. In: Słowiński [305], pp. 331 -- 362.
[285] Skowron, A.; Stepaniuk, J.: Tolerance approximation spaces. Fundamenta informaticae 27, No. 2 -- 3, 245-253 (1996) · Zbl 0868.68103
[286] A. Skowron, J. Stepaniuk, Information granules and rough-neural computing. In: Pal et al. [194], pp. 43 -- 84.
[287] A. Skowron, J. Stepaniuk, Ontological framework for approximation. In: Śle¸zak et al. [300], pp. 718 -- 727. · Zbl 1134.68514
[288] Skowron, A.; Stepaniuk, J.; Peters, J. F.: Rough sets and infomorphisms: towards approximation of relations in distributed environments. Fundamenta informaticae 54, No. 1 -- 2, 263-277 (2003) · Zbl 1111.68706
[289] A. Skowron, R. Swiniarski, Rough sets and higher order vagueness. In: Śle¸zak et al. [300], pp. 33 -- 42.
[290] A. Skowron, R. Swiniarski, P. Synak, Approximation spaces and information granulation. In: Peters and Skowron [226], pp. 175 -- 189. · Zbl 1116.68602
[291] Skowron, A.; Synak, P.: Complex patterns. Fundamenta informaticae 60, No. 1 -- 4, 351-366 (2004) · Zbl 1083.68122
[292] Skowron, A.; Synak, P.: Reasoning in information maps. Fundamenta informaticae 59, No. 2 -- 3, 241-259 (2004) · Zbl 1098.68132
[293] Skowron, A.; Szczuka, M.: Proceedings of the workshop on rough sets in knowledge discovery and soft computing at ETAPS 2003, April 12 -- 13, 2003. Electronic notes in computer science 82(4) (2003)
[294] D. Śle¸zak, Approximate reducts in decision tables. In: Sixth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’1996. Granada, Spain, 1996, vol. III, pp. 1159 -- 1164.
[295] D. Śle¸zak, Approximate Markov boundaries and Bayesian networks. In: Inuiguchi et al. [97], pp. 109 -- 121.
[296] Śle&cedil, D.; Zak: Normalized decision functions and measures for inconsistent decision tables analysis. Fundamenta informaticae 44, 291-319 (2000)
[297] D. Śle¸zak, Various approaches to reasoning with frequency-based decision reducts: A survey. In: Polkowski et al. [241], pp. 235 -- 285.
[298] Śle&cedil, D.; Zak: Approximate entropy reducts. Fundamenta informaticae 53, 365-387 (2002)
[299] D. Śle¸zak, Rough sets and Bayes factor. In: Peters and Skowron [226], pp. 202 -- 229.
[300] Śle&cedil, D.; Zak; Wang, G.; Szczuka, M.; Düntsch, I.; Yao, Y.: Proceedings of the 10th international conference on rough sets, fuzzy sets, data mining, and granular computing (RSFDGrC’2005), Regina, Canada, August 31 -- September 3, 2005, part I. Lecture notes in artificial intelligence 3641 (2005)
[301] Śle&cedil, D.; Zak; Yao, J. T.; Peters, J. F.; Ziarko, W.; Hu, X.: Proceedings of the 10th international conference on rough sets, fuzzy sets, data mining, and granular computing (RSFDGrC’2005), Regina, Canada, August 31 -- September 3, 2005, part II. Lecture notes in artificial intelligence 3642 (2005)
[302] Śle&cedil, D.; Zak; Ziarko, W.: The investigation of the Bayesian rough set model. International journal of approximate reasoning 40, 81-91 (2005) · Zbl 1099.68089
[303] Słowiński, K.; Słowiński, R.; Stefanowski, J.: Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis. Medical informatics 13, No. 3, 143-159 (1998)
[304] K. Słowiński, J. Stefanowski, Medical information systems -- problems with analysis and way of solution. In: Pal and Skowron [195], pp. 301 -- 315.
[305] Słowiński, R.: Intelligent decision support -- handbook of applications and advances of the rough sets theory, system theory. Knowledge engineering and problem solving 11 (1992)
[306] R. Słowiński, J. Stefanowski (Eds.). Special issue: Proceedings of the First International Workshop on Rough Sets: State of the Art and Perspectives, Kiekrz, Poznań, Poland, September 2 -- 4 (1992). In: Foundations of Computing and Decision Sciences, vol. 18(3 -- 4). 1993.
[307] Słowiński, R.; Stefanowski, J.: Rough set reasoning about uncertain data. Fundamenta informaticae 27, 229-244 (1996) · Zbl 0854.68098
[308] Słowiński, R.; Stefanowski, J.; Greco, S.; Matarazzo, B.: Rough sets processing of inconsistent information. Control and cybernetics 29, 379-404 (2000) · Zbl 1030.90045
[309] Słowiński, R.; Stefanowski, J.; Siwiński, D.: Application of rule induction and rough sets to verification of magnetic resonance diagnosis. Fundamenta informaticae 53, 345-363 (2002) · Zbl 1045.68918
[310] Słowiński, R.; Vanderpooten, D.: Similarity relation as a basis for rough approximations. Advances in machine intelligence and soft computing 4, 17-33 (1997)
[311] Smith, B.: Formal ontology, common sense and cognitive science. International journal of human-computer studies 43, 641-667 (1995)
[312] Stefanowski, J.; Tsoukiàs, A.: Incomplete information tables and rough classification. Computational intelligence 17, No. 3, 545-566 (2001) · Zbl 1013.68238
[313] Stefanowski, J.; Wilk, S.: Minimizing business credit risk by means of approach integrating decision rules and case based learning. Journal of intelligent systems in accounting, finance and management 10, 97-114 (2001)
[314] Stell, J. G.: Boolean connection algebras: A new approach to the region-connection calculus. Artificial intelligence 122, 111-136 (2000) · Zbl 0948.68142
[315] J. Stepaniuk, Approximation spaces, reducts and representatives. In: Polkowski and Skowron [245], pp. 109 -- 126. · Zbl 0943.68158
[316] J. Stepaniuk, Knowledge discovery by application of rough set models. In: Polkowski et al. [241], pp. 137 -- 233. · Zbl 0992.68199
[317] K. Sugihara, Y. Maeda, H. Tanaka, Interval evaluation by AHP with rough set concept. In: Skowron et al. [280], pp. 375 -- 381.
[318] Z. Suraj, Rough set methods for the synthesis and analysis of concurrent processes. In: Polkowski et al. [241], pp. 379 -- 488. · Zbl 0992.68201
[319] J. Swift. Gulliver’s Travels into Several Remote Nations of the World. (ananymous publisher), London, M, DCC, XXVI, 1726.
[320] R. Swiniarski, Rough sets and Bayesian methods applied to cancer detection. In: Polkowski and Skowron [243], pp. 609 -- 616.
[321] R. Swiniarski, Rough sets and principal component analysis and their applications. data model building and classification. In: Pal and Skowron [195], pp. 275 -- 300.
[322] R. Swiniarski, An application of rough sets and Haar wavelets to face recognition. In: Ziarko and Yao [380], pp. 561 -- 568. · Zbl 1013.68261
[323] R. Swiniarski, L. Hargis, A new halftoning method based on error diffusion with rough set filterin. In: Polkowski and Skowron [245], pp. 336 -- 342.
[324] Swiniarski, R.; Hargis, L.: Rough sets as a front end of neural networks texture classifiers. Neurocomputing 36, No. 1 -- 4, 85-103 (2001) · Zbl 1003.68642
[325] R.W. Swiniarski, A. Skowron, Independent component analysis, principal component analysis and rough sets in face recognition. In: Peters and Skowron [225], pp. 392 -- 404. · Zbl 1104.68772
[326] Szczuka, M.: Refining classifiers with neural networks. International journal of intelligent systems 16, 39-55 (2001) · Zbl 0969.68140
[327] Szczuka, M.; Wojdyłło, P.: Neuro-wavelet classifiers for EEG signals based on rough set methods. Neurocomputing 36, 103-122 (2001) · Zbl 1003.68640
[328] H. Tanaka, Dual mathematical models based on rough approximations in data analysis. In: Wang et al. [350], pp. 52 -- 59. · Zbl 1026.68658
[329] Tanaka, H.; Lee, H.: Interval regression analysis with polynomials and its similarity to rough sets concept. Fundamenta informaticae 37, No. 1 -- 2, 71-87 (1999) · Zbl 0930.68043
[330] Tarski, A.: Logic, semantics, metamathematics. (1983)
[331] Terano, T.; Nishida, T.; Namatame, A.; Tsumoto, S.; Ohsawa, Y.; Washio, T.: New frontiers in artificial intelligence, joint JSAI’2001 workshop post-Proceedings. Lecture notes in artificial intelligence 2253 (2001) · Zbl 0984.00057
[332] Tsumoto, S.: Automated induction of medical expert system rules from clinical databases based on rough set theory. Information sciences 112, 67-84 (1998)
[333] S. Tsumoto, Empirical induction on medical system expert rules based on rough set theory. In: Polkowski and Skowron [243], pp. 307 -- 323.
[334] Tsumoto, S.: Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information sciences 162, No. 2, 65-80 (2004)
[335] Tsumoto, S.; Hirano, S.: Automated discovery of chronological patterns in long time-series medical datasets. International journal of intelligent systems 20, No. 6, 737-757 (2005)
[336] S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, A. Nakamura (Eds.). Proceedings of the The Fourth International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, November 6-8, University of Tokyo, Japan. The University of Tokyo, Tokyo, 1996.
[337] Tsumoto, S.; Słowiński, R.; Komorowski, J.; Grzymała-Busse, J.: Proceedings of the 4th international conference on rough sets and current trends in computing (RSCTC’2004), Uppsala, Sweden, June 1 -- 5, 2004. Lecture notes in artificial intelligence 3066 (2004) · Zbl 1088.68009
[338] Tsumoto, S.; Tanaka, H.: PRIMEROSE: probabilistic rule induction method based on rough sets and resampling methods. Computational intelligence: an international journal 11, 389-405 (1995)
[339] Tsumoto, S.; Ziarko, W.: The application of rough sets-based data mining technique to differential diagnosis of meningoenchepahlitis. Lecture notes in artificial intelligence 1079, 438-447 (1996)
[340] Vakarelov, D.: A modal logic for similarity relations in pawlak knowledge representation systems. Fundamenta informaticae 15, No. 1, 61-79 (1991) · Zbl 0737.68078
[341] Vakarelov, D.: Modal logics for knowledge representation systems. Theoretical computer science 90, No. 2, 433-456 (1991) · Zbl 0755.68131
[342] Vakarelov, D.: A duality between pawlak’s knowledge representation systems and bi-consequence systems. Studia logica 55, No. 1, 205-228 (1995) · Zbl 0839.68098
[343] D. Vakarelov, A modal characterization of indiscernibility and similarity relations in Pawlak’s information systems. In: Śle¸zak et al. [300], pp. 12 -- 22 (plenary talk).
[344] J.J. Valdés, A.J. Barton, Relevant attribute discovery in high dimensional data based on rough sets and unsupervised classification: Application to leukemia gene expression. In: Śle¸zak et al. [301], pp. 362 -- 371.
[345] Varzi, A. C.: Change, temporal parts, and the argument from vagueness. Dialectica 59, No. 4, 485-498 (2005)
[346] A. Vitória, A framework for reasoning with rough sets. Licentiate Thesis, Linköping University 2004. In: Peters and Skowron [227], pp. 178 -- 276.
[347] Vopenka, P.: Mathematics in the alternative set theory. (1979) · Zbl 0499.03042
[348] Wakulicz-Deja, A.; Paszek, P.: Diagnose progressive encephalopathy applying the rough set theory. International journal of medical informatics 46, No. 2, 119-127 (1997)
[349] Wakulicz-Deja, A.; Paszek, P.: Applying rough set theory to multi stage medical diagnosing. Fundamenta informaticae 54, No. 4, 387-408 (2003) · Zbl 1039.92023
[350] Wang, G.; Liu, Q.; Yao, Y.; Skowron, A.: Proceedings of the 9th international conference on rough sets, fuzzy sets, data mining, and granular computing (RSFDGrC’2003), Chongqing, China, May 26 -- 29, 2003. Lecture notes in artificial intelligence 2639 (2003) · Zbl 1019.00015
[351] Wang, J.; Jia, C.; Zhao, K.: Investigation on AQ11, ID3 and the principle of discernibility matrix. Journal of computer science and technology 16, No. 1, 1-12 (2001) · Zbl 0974.68175
[352] Wang, J.; Ju, W.: Reduction algorithms based on discernibility matrix: the ordered attributes method. Journal of computer science and technology 16, No. 6, 489-504 (2001) · Zbl 1014.68160
[353] A. Wasilewska, Topological rough algebras. In: Rough Sets and Data Mining -- Analysis of Imperfect Data. pp. 411 -- 425. · Zbl 0860.03042
[354] Wasilewska, A.; Vigneron, L.: Rough equality algebras. Proceedings of the second joint annual conference on information sciences, 26-30 (1995)
[355] A. Wasilewska, L. Vigneron, Rough algebras and automated deduction. In: Polkowski and Skowron [244], pp. 261 -- 275. · Zbl 0926.03081
[356] Wieczorkowska, A.; Wróblewski, J.; Synak, P.; Śle&cedil, D.; Zak: Application of temporal descriptors to musical instrument sound recognition. Journal of intelligent information systems 21, No. 1, 71-93 (2003)
[357] A. Wojna, Analogy based reasoning in classifier construction. In: Peters and Skowron [227], pp. 277 -- 374. · Zbl 1136.68508
[358] Wong, S. K. M.; Ziarko, W.: Comparison of the probabilistic approximate classification and the fuzzy model. Fuzzy sets and systems 21, 357-362 (1987) · Zbl 0618.60002
[359] Wróblewski, J.: Theoretical foundations of order-based genetic algorithms. Fundamenta informaticae 28, 423-430 (1996) · Zbl 0866.68043
[360] J. Wróblewski, Genetic algorithms in decomposition and classification problem. In: Polkowski and Skowron [245], pp. 471 -- 487.
[361] J. Wróblewski, Adaptive aspects of combining approximation spaces. In: Pal et al. [194], pp. 139 -- 156.
[362] Wu, W. -Z.; Mi, J. -S.; Zhang, W. -X.: Generalized fuzzy rough sets. Information sciences 151, 263-282 (2003) · Zbl 1019.03037
[363] Wu, W. -Z.; Zhang, W. -X.: Constructive and axiomatic approaches of fuzzy approximation operators. Information sciences 159, No. 2, 233-254 (2004) · Zbl 1071.68095
[364] Y.Y. Yao, Generalized rough set models. In: Polkowski and Skowron [244], pp. 286 -- 318. · Zbl 0946.68137
[365] Yao, Y. Y.: Information granulation and rough set approximation. International journal of intelligent systems 16, 87-104 (2001) · Zbl 0969.68079
[366] Y.Y. Yao, On generalizing rough set theory. In: Wang et al. [350], pp. 44 -- 51. · Zbl 1026.68669
[367] Yao, Y. Y.: Probabilistic approaches to rough sets. Expert systems 20, 287-297 (2003)
[368] Yao, Y. Y.; Lingras, P.: Interpretation of belief functions in the theory of rough sets. Information sciences 104, No. 1-2, 81-106 (1998) · Zbl 0923.04007
[369] Y.Y. Yao, S.K.M. Wong, T.Y. Lin, A review of rough set models. In: Rough Sets and Data Mining -- Analysis of Imperfect Data, pp. 47 -- 75. · Zbl 0861.68101
[370] Zadeh, L. A.: Fuzzy sets. Information and control 8, 338-353 (1965) · Zbl 0139.24606
[371] Zhang, W. -X.; Mi, J. -S.; Wu, W. -Z.: Approaches to knowledge reductions in inconsistent systems. International journal of intelligent systtems 18, No. 9, 989-1000 (2003) · Zbl 1069.68606
[372] Zheng, Z.; Wang, G.: RRIA: A rough set and rule tree based incremental knowledge acquisition algorithm. Fundamenta informaticae 59, No. 2 -- 3, 299-313 (2004) · Zbl 1098.68711
[373] Zhong, N.; Dong, J.; Ohsuga, S.: Meningitis data mining by cooperatively using GDT-RS and RSBR. Pattern recognition letters 24, No. 6, 887-894 (2003) · Zbl 1053.68099
[374] Zhong, N.; Liu, J.: Intelligent technologies for information analysis. (2004) · Zbl 1058.68099
[375] Ziarko, W.: Variable precision rough set model. Journal of computer and system sciences 46, 39-59 (1993) · Zbl 0764.68162
[376] Ziarko, W.: Rough sets, fuzzy sets and knowledge discovery: Proceedings of the second international workshop on rough sets and knowledge discovery (RSKD’93), Banff, Alberta, Canada, October 12 -- 15, 1993. Workshops in computing (1994)
[377] Ziarko, W.: Computational intelligence. An international journal 11, No. 2 (1995)
[378] Ziarko, W.: Fundamenta informaticae. 27, No. 2 -- 3 (1996)
[379] Ziarko, W.: Probabilistic decision tables in the variable precision rough set model. Computational intelligence 17, 593-603 (2001)
[380] Ziarko, W.; Yao, Y.: Proceedings of the 2nd international conference on rough sets and current trends in computing (RSCTC’2000), Banff, Canada, October 16 -- 19, 2000. Lecture notes in artificial intelligence 2005 (2001)