×

Rudiments of rough sets. (English) Zbl 1142.68549

Summary: Worldwide, there has been a rapid growth in interest in rough set theory and its applications in recent years. Evidence of this can be found in the increasing number of high-quality articles on rough sets and related topics that have been published in a variety of international journals, symposia, workshops, and international conferences in recent years. In addition, many international workshops and conferences have included special sessions on the theory and applications of rough sets in their programs. Rough set theory has led to many interesting applications and extensions. It seems that the rough set approach is fundamentally important in artificial intelligence and cognitive sciences, especially in research areas such as machine learning, intelligent systems, inductive reasoning, pattern recognition, mereology, knowledge discovery, decision analysis, and expert systems. In the article, we present the basic concepts of rough set theory and point out some rough set-based research directions and applications.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Alpigini, J. J.; Peters, J. F.; Skowron, A.; Zhong, N., Third International Conference on Rough Sets and Current Trends in Computing (RSCTC’2002), Malvern, PA, October 14-16, 2002. Third International Conference on Rough Sets and Current Trends in Computing (RSCTC’2002), Malvern, PA, October 14-16, 2002, Lecture Notes in Artificial Intelligence, vol. 2475 (2002), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1001.00048
[4] (Ariew, R.; Garber, D.; Leibniz, G. W., Philosophical Essays (1989), Hackett Publishing Company: Hackett Publishing Company Indianapolis)
[5] Balbiani, P.; Vakarelov, D., A modal logic for indiscernibility and complementarity in information systems, Fundamenta Informaticae, 50, 3-4, 243-263 (2002) · Zbl 1016.03026
[6] Banerjee, M., Logic for rough truth, Fundamenta Informaticae, 71, 2-3, 139-151 (2006) · Zbl 1094.03015
[8] Banerjee, M.; Pal, S. K., Roughness of a fuzzy set, Information Sciences, 93, 3-4, 235-246 (1996) · Zbl 0879.04004
[15] Black, M., Vagueness: an exercise in logical analysis, Philosophy of Science, 4, 4, 427-455 (1937)
[16] Brown, F., Boolean Reasoning (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[18] Cantor, G., Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, Crelle’s Journal für Mathematik, 77, 258-263 (1874) · JFM 06.0057.01
[19] Cantor, G., Grundlagen einer allgemeinen Mannigfaltigkeitslehre (1883), B.G. Teubner: B.G. Teubner Leipzig · JFM 15.0453.01
[20] (Casti, R.; Varzi, A., Parts and Places. The Structures of Spatial Representation (1999), The MIT Press: The MIT Press Cambridge, MA)
[23] Cattaneo, G.; Ciucci, D.; Giuntini, R.; Konig, M., Algebraic structures related to many valued logical systems. Part I: Heyting-Wajsberg algebras, Fundamenta Informaticae, 63, 4, 331-355 (2004) · Zbl 1090.03035
[24] Cattaneo, G.; Ciucci, D.; Giuntini, R.; Konig, M., Algebraic structures related to many valued logical systems. Part II: Equivalence among some widespread structures, Fundamenta Informaticae, 63, 4, 357-373 (2004) · Zbl 1092.03035
[25] Cercone, N.; Skowron, A.; Zhong, N., Computational Intelligence: An International Journal, vol. 17, 3 (2001), (Special issue)
[27] Chmielewski, M. R.; Grzymała-Busse, J. W., Global discretization of continuous attributes as preprocessing for machine learning, International Journal of Approximate Reasoning, 15, 4, 319-331 (1996) · Zbl 0949.68560
[28] Cios, K.; Pedrycz, W.; Swiniarski, R., Data Mining Methods for Knowledge Discovery (1998), Kluwer: Kluwer Norwell, MA · Zbl 0912.68199
[29] Comer, S. D., An algebraic approach to the approximation of information, Fundamenta Informaticae, 14, 4, 495-502 (1991) · Zbl 0727.68114
[30] Czyżewski, A., Automatic identification of sound source position employing neural networks and rough sets, Pattern Recognition Letters, 24, 6, 921-933 (2003)
[31] Czyżewski, A.; Królikowski, R., Neuro-rough control of masking thresholds for audio signal enhancement, Neurocomputing, 36, 5-27 (2001) · Zbl 1003.68639
[33] (Demri, S.; Orłowska, E., Incomplete Information: Structure, Inference, Complexity. Incomplete Information: Structure, Inference, Complexity, Monographs in Theoretical Computer Sience (2002), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1016.68163
[34] Demri, S.; Sattler, U., Automata-theoretic decision procedures for information logics, Fundamenta Informaticae, 53, 1, 1-22 (2002) · Zbl 1025.03021
[35] Demri, S.; Stepaniuk, J., Computational complexity of multimodal logics based on rough sets, Fundamenta Informaticae, 44, 4, 373-396 (2000) · Zbl 0971.03023
[38] Doherty, P.; Łukaszewicz, W.; Skowron, A.; Szałas, A., Knowledge Engineering: A Rough Set Approach. Knowledge Engineering: A Rough Set Approach, Studies in Fizziness and Soft Computing, vol. 202 (2006), Springer: Springer Heidelberg · Zbl 1131.68107
[39] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, Fuzzy Sets and Systems, 23, 3-18 (1987) · Zbl 0633.68099
[40] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 191-209 (1990) · Zbl 0715.04006
[43] Duda, R.; Hart, P.; Stork, R., Pattern Classification (2002), John Wiley & Sons: John Wiley & Sons New York, NY
[44] (Dunin-Ke¸plicz, B.; Jankowski, A.; Skowron, A.; Szczuka, M., Monitoring, Security, and Rescue Tasks in Multiagent Systems (MSRAS’2004). Monitoring, Security, and Rescue Tasks in Multiagent Systems (MSRAS’2004), Advances in Soft Computing (2005), Springer: Springer Heidelberg) · Zbl 1073.68005
[45] Düntsch, I., A logic for rough sets, Theoretical Computer Science, 179, 427-436 (1997) · Zbl 0896.03050
[46] Düntsch, I.; Gediga, G., Uncertainty measures of rough set prediction, Artificial Intelligence, 106, 1, 77-107 (1998)
[47] Düntsch, I.; Gediga, G., Rough set data analysis, (Encyclopedia of Computer Science and Technology, vol. 43 (2000), Marcel Dekker), 281-301 · Zbl 0983.68194
[48] Düntsch, I.; Gediga, G., Rough Set Data Analysis: A Road to Non-invasive Knowledge Discovery (2000), Methodos Publishers: Methodos Publishers Bangor, UK
[49] Düntsch, I.; Orlowska, E.; Wang, H., Algebras of approximating regions, Fundamenta Informaticae, 46, 1-2, 71-82 (2001) · Zbl 0987.03058
[50] Fan, T.-F.; Liau, C.-J.; Yao, Y., On modal and fuzzy decision logics based on rough set theory, Fundamenta Informaticae, 52, 4, 323-344 (2002) · Zbl 1016.03027
[52] Filip, H., Nominal and verbal semantic structure: analogies and interactions, Language Sciences, 23, 453-501 (2000)
[53] Fine, K., Vagueness, truth and logic, Synthese, 30, 265-300 (1975) · Zbl 0311.02011
[54] Forrest, P., Sets as mereological tropes, Metaphysical, 3, 5-10 (2002)
[55] Frege, G., Grundgesetzen der Arithmetik, 2 (1903), Verlag von Hermann Pohle: Verlag von Hermann Pohle Jena · JFM 34.0071.05
[56] Friedman, J. H.; Hastie, T.; Tibshirani, R., The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2001), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0973.62007
[57] (Gabbay, D. M.; Hogger, C. J.; Robinson, J. A., Handbook of Logic in Artificial Intelligence and Logic Programming. Handbook of Logic in Artificial Intelligence and Logic Programming, Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3 (1994), Calderon Press: Calderon Press Oxford) · Zbl 0804.03017
[58] Garcia-Molina, H.; Ullman, J.; Widom, J., Database Systems: The Complete Book (2002), Prentice Hall: Prentice Hall Upper Saddle River, New Jersey
[59] Gediga, G.; Düntsch, I., Rough approximation quality revisited, Artificial Intelligence, 132, 219-234 (2001) · Zbl 0983.68194
[60] Gediga, G.; Düntsch, I., Maximum consistency of incomplete data via non-invasive imputation, Artificial Intelligence Review, 19, 93-107 (2003)
[62] Gomolińska, A., A comparative study of some generalized rough approximations, Fundamenta Informaticae, 51, 1-2, 103-119 (2002) · Zbl 1023.03050
[63] Gomolińska, A., A graded meaning of formulas in approximation spaces, Fundamenta Informaticae, 60, 1-4, 159-172 (2004) · Zbl 1083.68119
[65] Góra, G.; Wojna, A. G., RIONA: A new classification system combining rule induction and instance-based learning, Fundamenta Informaticae, 51, 4, 369-390 (2002) · Zbl 1011.68114
[67] Greco, S.; Inuiguchi, M.; Słowiński, R., Fuzzy rough sets and multiple-premise gradual decision rules, International Journal of Approximate Reasoning, 41, 2, 179-211 (2006) · Zbl 1093.68114
[68] Greco, S.; Matarazzo, B.; Słowiński, R., Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems, (Zanakis, S.; Doukidis, G.; Zopounidis, C., Decision Making: Recent Developments and Worldwide Applications (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA), 295-316
[69] Greco, S.; Matarazzo, B.; Słowiński, R., Rough set theory for multicriteria decision analysis, European Journal of Operational Research, 129, 1, 1-47 (2001) · Zbl 1008.91016
[70] Greco, S.; Matarazzo, B.; Słowiński, R., Data mining tasks and methods: classification: multicriteria classification, (Kloesgen, W.; Żytkow, J., Handbook of KDD (2002), Oxford University Press: Oxford University Press Oxford), 318-328
[72] Greco, S.; Pawlak, Z.; Słowiński, R., Can Bayesian confirmation measures be useful for rough set decision rules?, Engineering Applications of Artificial Intelligence, 17, 4, 345-361 (2004)
[74] Grzymała-Busse, J. W., Managing Uncertainty in Expert Systems (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Norwell, MA · Zbl 0751.68069
[76] Grzymała-Busse, J. W., Selected algorithms of machine learning from examples, Fundamenta Informaticae, 18, 193-207 (1993) · Zbl 0781.68094
[77] Grzymała-Busse, J. W., Classification of unseen examples under uncertainty, Fundamenta Informaticae, 30, 3-4, 255-267 (1997)
[78] Grzymała-Busse, J. W., A new version of the rule induction system LERS, Fundamenta Informaticae, 31, 1, 27-39 (1997) · Zbl 0882.68122
[83] Grzymała-Busse, J. W.; Grzymała-Busse, W. J.; Goodwin, L. K., Coping with missing attribute values based on closest fit in preterm birth data: a rough set approach, Computational Intelligence: An International Journal, 17, 3, 425-434 (2001)
[85] Grzymała-Busse, J. W.; Ziarko, W., Data mining and rough set theory, Communications of the ACM, 43, 108-109 (2000)
[86] Han, S.; Wang, J., Reduct and attribute order, Journal of Computer Science and Technology, 19, 4, 429-449 (2004)
[87] Hempel, C. G., Vagueness and logic, Philosophy of Science, 6, 163-180 (1939)
[89] Hirano, S.; Tsumoto, S., Rough representation of a region of interest in medical images, International Journal of Approximate Reasoning, 40, 1-2, 23-34 (2005)
[90] Hu, X.; Cercone, N., Learning in relational databases: a rough set approach, Computational Intelligence: An International Journal, 11, 2, 323-338 (1995)
[91] Hu, X.; Cercone, N., Data mining via discretization, generalization and rough set feature selection, Knowledge and Information Systems: An International Journal, 1, 1, 33-60 (1999)
[92] Hu, X.; Cercone, N., Discovering maximal generalized decision rules through horizontal and vertical data reduction, Computational Intelligence: An International Journal, 17, 4, 685-702 (2001)
[93] Hu, X.; Cercone, N.; Shan, N., A rough set approach to compute all maximal generalized rules, Journal of Computing and Information, 1, 1, 1078-1089 (1995)
[94] Hu, X.; Lin, T. Y.; Han, J., A new rough set model based on database systems, Journal of Fundamental Informatics, 59, 2-3, 135-152 (2004) · Zbl 1098.68127
[95] Hvidsten, T. R.; Wilczyński, B.; Kryshtafovych, A.; Tiuryn, J.; Komorowski, J.; Fidelis, K., Discovering regulatory binding-site modules using rule-based learning, Genome Research, 6, 15, 856-866 (2005)
[97] (Inuiguchi, M.; Hirano, S.; Tsumoto, S., Rough Set Theory and Granular Computing. Rough Set Theory and Granular Computing, Studies in Fuzziness and Soft Computing, vol. 125 (2003), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1054.68696
[100] Järvinen, J., On the structure of rough approximations, Fundamenta Informaticae, 53, 2, 135-153 (2002) · Zbl 1012.68200
[101] Jech, T., Set Theory (1997), Springer Verlag: Springer Verlag New York · Zbl 0882.03045
[102] Jelonek, J.; Stefanowski, J., Feature subset selection for classification of histological images, Artificial Intelligence in Medicine, 9, 3, 227-239 (1997)
[103] Jensen, R.; Shen, Q., Semantics-preserving dimensionality reduction: rough and fuzzy-rough approaches, IEEE Transactions on Knowledge and Data Engineering, 16, 2, 1457-1471 (2004)
[106] Keefe, R.; Smith, P., Vagueness: A Reader (1997), MIT Press: MIT Press Massachusetts, MA
[107] Kim, D., Data classification based on tolerant rough set, Pattern Recognition, 34, 8, 1613-1624 (2001) · Zbl 0984.68520
[108] Kim, D.; Bang, S. Y., A handwritten numeral character classification using tolerant rough set, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 9, 923-937 (2000)
[109] (Kloesgen, W.; Żytkow, J., Handbook of Knowledge Discovery and Data Mining (2002), Oxford University Press: Oxford University Press Oxford) · Zbl 1003.68037
[112] Kostek, B., Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Physical Acoustics. Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Physical Acoustics, Studies in Fuzziness and Soft Computing, vol. 31 (1999), Physica-Verlag: Physica-Verlag Heidelberg · Zbl 1044.68919
[113] Kostek, B., Perception-Based Data Processing in Acoustics: Applications to Music Information Retrieval and Psychophysiology of Hearing. Perception-Based Data Processing in Acoustics: Applications to Music Information Retrieval and Psychophysiology of Hearing, Studies in Computational Intelligence, vol. 3 (2005), Springer: Springer Heidelberg
[118] Kryszkiewicz, M., Rough set approach to incomplete information systems, Information Sciences, 112, 1-4, 39-49 (1998) · Zbl 0951.68548
[119] Kryszkiewicz, M., Rules in incomplete information systems, Information Sciences, 113, 3-4, 271-292 (1999) · Zbl 0948.68214
[121] Lægreid, A.; Hvidsten, T. R.; Midelfart, H.; Komorowski, J.; Sandvik, A. K., Discovering regulatory binding-site modules using rule-based learning, Genome Researche, 5, 13, 965-979 (2003)
[122] Latkowski, R., On decomposition for incomplete data, Fundamenta Informaticae, 54, 1, 1-16 (2003) · Zbl 1146.68460
[123] Latkowski, R., Flexible indiscernibility relations for missing attribute values, Fundamenta Informaticae, 67, 1-3, 131-147 (2005) · Zbl 1096.68149
[126] Leśniewski, S., Grungzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae, 14, 1-81 (1929) · JFM 55.0626.03
[127] Li, Y.; Shiu, S. C.-K.; Pal, S. K.; Liu, J. N.-K., A rough set-based case-based reasoner for text categorization, International Journal of Approximate Reasoning, 41, 2, 229-255 (2006)
[128] Lin, T. Y., Neighborhood systems and approximation in database and knowledge base systems, (Emrich, M. L.; Phifer, M. S.; Hadzikadic, M.; Ras, Z. W., Proceedings of the Fourth International Symposium on Methodologies of Intelligent Systems (Poster Session), October 12-15, 1989 (1989), Oak Ridge National Laboratory: Oak Ridge National Laboratory Charlotte, NC), 75-86
[129] Lin, T. Y., Journal of the Intelligent Automation and Soft Computing, vol. 2, 2 (1996), (Special issue)
[130] (Lin, T. Y.; Wildberger, A. M., Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery (1995), Simulation Councils, Inc.: Simulation Councils, Inc. San Diego, CA, USA)
[131] (Lin, T. Y.; Yao, Y. Y.; Zadeh, L. A., Rough Sets, Granular Computing and Data Mining. Rough Sets, Granular Computing and Data Mining, Studies in Fuzziness and Soft Computing (2001), Physica-Verlag: Physica-Verlag Heidelberg) · Zbl 0983.00027
[132] Lingras, P., Fuzzy – rough and rough – fuzzy serial combinations in neuro-computing, Neurocomputing, 36, 1-4, 29-44 (2001) · Zbl 1003.68637
[133] Lingras, P., Unsupervised rough set classification using gas, Journal of Intelligent Information Systems, 16, 3, 215-228 (2001) · Zbl 1016.68112
[134] Lingras, P.; Davies, C., Application of rough genetic algorithms, Computational Intelligence: An International Journal, 17, 3, 435-445 (2001)
[135] Lingras, P.; West, C., Interval set clustering of Web users with rough \(K\)-means, Journal of Intelligent Information Systems, 23, 1, 5-16 (2004) · Zbl 1074.68586
[136] Liu, C.; Zhong, N., Rough problem settings for ilp dealing with imperfect data, Computational Intelligence: An International Journal, 17, 3, 446-459 (2001)
[137] Łukasiewicz, J., Die logischen Grundlagen der Wahrscheinlichkeitsrechnung, 1913, (Borkowski, L., Jan Łukasiewicz - Selected Works (1970), North Holland Publishing Company, Polish Scientific Publishers: North Holland Publishing Company, Polish Scientific Publishers Amsterdam, London, Warsaw), 16-63
[138] (Maimon, O.; Rokach, L., The Data Mining and Knowledge Discovery Handbook (2005), Springer: Springer Heidelberg) · Zbl 1087.68029
[141] Marek, V. W.; Rasiowa, H., Approximating sets with equivalence relations, Theoretical Computer Science, 48, 3, 145-152 (1986) · Zbl 0638.68066
[142] Marek, V. W.; Truszczyński, M., Contributions to the theory of rough sets, Fundamenta Informaticae, 39, 4, 389-409 (1999) · Zbl 0944.68051
[143] Menasalvas, E.; Wasilewska, A., Data mining as generalization: a formal model, (Lin, T. Y.; Ohsuga, S.; Liau, C. J.; Hu, X., Foundations and Novel Approaches in Data Mining, Computational Intelligence (2006), Springer: Springer Heidelberg), 99-126
[145] Midelfart, H.; Komorowski, J.; Nørsett, K.; Yadetie, F.; Sandvik, A. K.; Lægreid, A., Learning rough set classifiers from gene expression and clinical data, Fundamenta Informaticae, 2, 53, 155-183 (2004) · Zbl 1011.92025
[146] Mill, J. S., Ratiocinative and Inductive, Being a Connected View of the Principles of Evidence, and the Methods of Scientific Investigation (1862), Parker, Son, and Bourn: Parker, Son, and Bourn West Strand London
[147] Mitchel, T. M., Machine Learning, Computer Science (1999), McGraw-Hill: McGraw-Hill Boston, MA
[149] Mitra, P.; Pal, S. K.; Siddiqi, M. A., Non-convex clustering using expectation maximization algorithm with rough set initialization, Pattern Recognition Letters, 24, 6, 863-873 (2003) · Zbl 1053.68098
[151] Mitra, S.; Acharya, T., Data mining. Multimedia, Soft Computing, and Bioinformatics (2003), John Wiley & Sons: John Wiley & Sons New York, NY
[152] Miyamoto, S., Application of rough sets to information retrieval, Journal of the American Society for Information Science, 49, 3, 195-220 (1998)
[153] Miyamoto, S., Generalizations of multisets and rough approximations, International Journal of Intelligent Systems, 19, 7, 639-652 (2004) · Zbl 1101.68524
[159] Nakamura, A., Fuzzy quantifiers and rough quantifiers, (Wang, P. P., Advances in Fuzzy Theory and Technology II (1994), Duke University Press: Duke University Press Durham, NC), 111-131
[161] Nakamura, A., A rough logic based on incomplete information and its application, International Journal of Approximate Reasoning, 15, 4, 367-378 (1996) · Zbl 0935.03045
[162] Nguyen, H. S., On the decision table with maximal number of reducts, Electronic Notes in Theoretical Computer Science, 82, 4 (2003) · Zbl 1270.68319
[164] Nguyen, H. S.; Nguyen, S. H., Rough sets and association rule generation, Fundamenta Informaticae, 40, 4, 383-405 (1999) · Zbl 0946.68153
[172] Norsett, K. G.; Lægreid, A.; Midelfart, H.; Yadetie, F.; Erlandsen, S. E.; Falkmer, S.; Gronbech, J. E.; Waldum, H. L.; Komorowski, J.; Sandvik, A. K., Gene expression based classification of gastric carcinoma, Cancer Letters, 2, 210, 227-237 (2004)
[173] Novotný, M.; Pawlak, Z., Algebraic theory of independence in information systems, Fundamenta Informaticae, 14, 4, 454-476 (1991) · Zbl 0727.68118
[174] Novotný, M.; Pawlak, Z., Algebraic theory of independence in information systems, Fundamenta Informaticae, 14, 454-476 (1991) · Zbl 0727.68118
[175] Novotný, M.; Pawlak, Z., On a problem concerning dependence space, Fundamenta Informaticae, 16, 275-287 (1992) · Zbl 0762.68059
[177] Orłowska, E., Semantics of vague concepts, (Dorn, G.; Weingartner, P., Foundation of Logic and Linguistics (1984), Plenum Press: Plenum Press New York), 465-482
[179] Orłowska, E., Reasoning about vague concepts, Bulletin of the Polish Academy of Sciences, Mathematics, 35, 643-652 (1987) · Zbl 0641.68160
[180] Orłowska, E., Logic for reasoning about knowledge, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 35, 559-572 (1989) · Zbl 0711.03008
[181] Orłowska, E., Kripke semantics for knowledge representation logics, Studia Logica, 49, 2, 255-272 (1990) · Zbl 0726.03023
[182] (Orowska, E., Incomplete Information: Rough Set Analysis. Incomplete Information: Rough Set Analysis, Studies in Fuzziness and Soft Computing, vol. 13 (1997), Springer-Verlag/Physica-Verlag: Springer-Verlag/Physica-Verlag Heidelberg)
[184] Orłowska, E.; Pawlak, Z., Representation of non-deterministic information, Theoretical Computer Science, 29, 27-39 (1984) · Zbl 0537.68098
[185] Pagliani, P., From concept lattices to approximation spaces: algebraic structures of some spaces of partial objects, Fundamenta Informaticae, 18, 1-25 (1993) · Zbl 0776.06005
[186] Pagliani, P., Rough sets and nelson algebras, Fundamenta Informaticae, 27, 2-3, 205-219 (1996) · Zbl 0858.68110
[187] Pagliani, P., Pretopologies and dynamic spaces, Fundamenta Informaticae, 59, 2-3, 221-239 (2004) · Zbl 1098.68131
[188] Pal, S. K., Soft data mining, computational theory of perceptions, and rough-fuzzy approach, Information Sciences, 163, 1-3, 5-12 (2004)
[189] (Pal, S. K.; Bandoyopadhay, S.; Biswas, S., Proceedings of the First International Conference on Pattern Recognition and Machine Intelligence (PReMI 2005), December 18-22, 2005. Proceedings of the First International Conference on Pattern Recognition and Machine Intelligence (PReMI 2005), December 18-22, 2005, Lecture Notes in Computer Science, vol. 3776 (2005), Indian Statistical Institute, Springer: Indian Statistical Institute, Springer Heidelberg, Kolkata)
[190] Pal, S. K.; Dasgupta, B.; Mitra, P., Rough self organizing map, Applied Intelligence, 21, 289-299 (2004) · Zbl 1101.68825
[191] Pal, S. K.; Mitra, P., Case generation using rough sets with fuzzy representation, IEEE Transactions on Knowledge and Data Engineering, 16, 3, 292-300 (2004)
[192] Pal, S. K.; Mitra, P., Pattern Recognition Algorithms for Data Mining (2004), CRC Press: CRC Press Boca Raton, Florida · Zbl 1099.68091
[193] Pal, S. K.; Pedrycz, W.; Skowron, A.; Swiniarski, R., Rough-neuro computing, Neurocomputing, 36 (2001), (Special volume)
[194] (Pal, S. K.; Polkowski, L.; Skowron, A., Rough-Neural Computing: Techniques for Computing with Words. Rough-Neural Computing: Techniques for Computing with Words, Cognitive Technologies (2004), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1040.68113
[195] (Pal, S. K.; Skowron, A., Rough Fuzzy Hybridization: A New Trend in Decision-Making (1999), Springer-Verlag: Springer-Verlag Singapore) · Zbl 0941.68129
[196] Pancerz, K.; Suraj, Z., Discovering concurrent models from data tables with the ROSECON system, Fundamenta Informaticae, 60, 1-4, 251-268 (2004) · Zbl 1086.68560
[197] Paun, G.; Polkowski, L.; Skowron, A., Rough set approximation of languages, Fundamenta Informaticae, 32, 149-162 (1997) · Zbl 0891.68054
[200] Pawlak, Z., Information systems – theoretical foundations, Information Systems, 6, 205-218 (1981) · Zbl 0462.68078
[202] Pawlak, Z., Rough sets, International Journal of Computer and Information Sciences, 11, 341-356 (1982) · Zbl 0501.68053
[203] Pawlak, Z., Rough classification, International Journal of Man-Machine Studies, 20, 5, 469-483 (1984) · Zbl 0541.68077
[204] Pawlak, Z., Rough logic, Bulletin of the Polish Academy of Sciences, Technical Sciences, 35, 5-6, 253-258 (1987) · Zbl 0645.03019
[205] Pawlak, Z., Decision logic, Bulletin of the EATCS, 44, 201-225 (1991) · Zbl 0744.68118
[206] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory. Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, vol. 9 (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, The Netherlands
[207] Pawlak, Z., Concurrent versus sequential – the rough sets perspective, Bulletin of the EATCS, 48, 178-190 (1992) · Zbl 1023.68640
[212] Pawlak, Z.; Skowron, A., A rough set approach for decision rules generation, (Thirteenth International Joint Conference on Artificial Intelligence IJCAI’1993 (1993), Morgan Kaufmann: Morgan Kaufmann Chambéry, France), 114-119
[213] Pawlak, Z.; Skowron, A., Rough membership functions, (Yager, R.; Fedrizzi, M.; Kacprzyk, J., Advances in the Dempster-Shafer Theory of Evidence (1994), John Wiley & Sons: John Wiley & Sons New York, NY), 251-271 · Zbl 0794.03045
[215] Pawlak, Z.; Słowiński, K.; Słowiński, R., Rough classification of patients after highly selective vagotomy for duodenal ulcer, International Journal of Man-Machine Studies, 24, 5, 413-433 (1986)
[216] Pawlak, Z.; Wong, S. K.M.; Ziarko, W., Rough sets: probabilistic versus deterministic approach, (Gaines, B.; Boose, J., Machine Learning and Uncertain Reasoning, vol. 3 (1990), Academic Press: Academic Press London), 227-242
[217] Pedrycz, W.; Han, L.; Peters, J. F.; Ramanna, S.; Zhai, R., Calibration of software quality: fuzzy neural and rough neural computing approaches, Neurocomputing, 36, 1-4, 149-170 (2001) · Zbl 1003.68635
[218] Peters, J.; Skowron, A., A rough set approach to reasoning about data. A rough set approach to reasoning about data, International Journal of Intelligent Systems, vol. 16, 1 (2001), (Special issue) · Zbl 0967.00024
[220] Peters, J. F.; Han, L.; Ramanna, S., Rough neural computing in signal analysis, Computational Intelligence: An International Journal, 17, 3, 493-513 (2001)
[221] Peters, J. F.; Henry, C., Reinforcement learning with approximation spaces, Fundamenta Informaticae, 71, 1-27 (2006)
[222] Peters, J. F.; Ramanna, S., Towards a software change classification system: A rough set approach, Software Quality Journal, 11, 2, 121-147 (2003)
[225] (Peters, J. F.; Skowron, A., Transactions on Rough Sets I: Journal Subline. Transactions on Rough Sets I: Journal Subline, Lecture Notes in Computer Science, vol. 3100 (2004), Springer: Springer Heidelberg)
[226] (Peters, J. F.; Skowron, A., Transactions on Rough Sets III: Journal Subline. Transactions on Rough Sets III: Journal Subline, Lecture Notes in Computer Science, vol. 3400 (2005), Springer: Springer Heidelberg) · Zbl 1063.68010
[227] (Peters, J. F.; Skowron, A., Transactions on Rough Sets IV: Journal Subline. Transactions on Rough Sets IV: Journal Subline, Lecture Notes in Computer Science, vol. 3700 (2005), Springer: Springer Heidelberg) · Zbl 1131.68013
[228] (Peters, J. F.; Skowron, A.; Dubois, D.; Grzymała-Busse, J. W.; Inuiguchi, M.; Polkowski, L., Transactions on Rough Sets II. Rough sets and fuzzy sets: Journal Subline. Transactions on Rough Sets II. Rough sets and fuzzy sets: Journal Subline, Lecture Notes in Computer Science, vol. 3135 (2004), Springer: Springer Heidelberg) · Zbl 1062.68008
[229] Peters, J. F.; Skowron, A.; Suraj, Z., An application of rough set methods in control design, Fundamenta Informaticae, 43, 1-4, 269-290 (2000) · Zbl 0971.93052
[230] Peters, J. F.; Skowron, A.; Synak, P.; Ramanna, S., Rough sets and information granulation, (Bilgic, O. K.T.; Baets, D., Tenth International Fuzzy Systems Association World Congress (IFSA 2003), Istanbul, Turkey, June 30-July 2, 2003. Tenth International Fuzzy Systems Association World Congress (IFSA 2003), Istanbul, Turkey, June 30-July 2, 2003, Lecture Notes in Artificial Intelligence, vol. 2715 (2003), Springer-Verlag: Springer-Verlag Heidelberg), 370-377 · Zbl 1037.68753
[231] Peters, J. F.; Suraj, Z.; Shan, S.; Ramanna, S.; Pedrycz, W.; Pizzi, N. J., Classification of meteorological volumetric radar data using rough set methods, Pattern Recognition Letters, 24, 6, 911-920 (2003)
[234] Pindur, R.; Susmaga, R.; Stefanowski, J., Hyperplane aggregation of dominance decision rules, Fundamenta Informaticae, 61, 2, 117-137 (2004) · Zbl 1083.68121
[236] Polkowski, L., On fractal dimension in information systems. toward exact sets in infinite information systems, Fundamenta Informaticae, 50, 3-4, 305-314 (2002) · Zbl 1012.68218
[237] Polkowski, L., Rough Sets: Mathematical Foundations. Rough Sets: Mathematical Foundations, Advances in Soft Computing (2002), Physica-Verlag: Physica-Verlag Heidelberg · Zbl 1040.68114
[238] Polkowski, L., Rough mereology: A rough set paradigm for unifying rough set theory and fuzzy set theory, Fundamenta Informaticae, 54, 67-88 (2003) · Zbl 1031.03069
[239] Polkowski, L., A note on 3-valued rough logic accepting decision rules, Fundamenta Informaticae, 61, 1, 37-45 (2004) · Zbl 1083.68116
[241] (Polkowski, L.; Lin, T. Y.; Tsumoto, S., Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, Studies in Fuzziness and Soft Computing, vol. 56 (2000), Springer-Verlag/Physica-Verlag: Springer-Verlag/Physica-Verlag Heidelberg) · Zbl 0979.00021
[242] Polkowski, L.; Skowron, A., Rough mereology: A new paradigm for approximate reasoning, International Journal of Approximate Reasoning, 15, 4, 333-365 (1996) · Zbl 0938.68860
[243] (Polkowski, L.; Skowron, A., First International Conference on Rough Sets and Soft Computing RSCTC’1998. First International Conference on Rough Sets and Soft Computing RSCTC’1998, Lecture Notes in Artificial Intelligence, vol. 1424 (1998), Springer-Verlag: Springer-Verlag Warsaw, Poland) · Zbl 0891.00026
[244] (Polkowski, L.; Skowron, A., Rough Sets in Knowledge Discovery 1: Methodology and Applications. Rough Sets in Knowledge Discovery 1: Methodology and Applications, Studies in Fuzziness and Soft Computing, vol. 18 (1998), Physica-Verlag: Physica-Verlag Heidelberg) · Zbl 0910.00028
[245] (Polkowski, L.; Skowron, A., Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, Studies in Fuzziness and Soft Computing, vol. 19 (1998), Physica-Verlag: Physica-Verlag Heidelberg) · Zbl 0910.00029
[247] Polkowski, L.; Skowron, A., Rough mereological calculi of granules: a rough set approach to computation, Computational Intelligence: An International Journal, 17, 3, 472-492 (2001)
[248] Pomykała, J.; Pomykała, J. A., The stone algebra of rough sets, Bulletin of the Polish Academy of Sciences, Mathematics, 36, 495-508 (1988) · Zbl 0786.04008
[250] Quafafou, M.; Boussouf, M., Generalized rough sets based feature selection, Intelligent Data Analysis, 4, 1, 3-17 (2000) · Zbl 1055.68560
[251] Radzikowska, A.; Kerre, E. E., A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 126, 2, 137-155 (2002) · Zbl 1004.03043
[253] Ras, Z. W., Reducts-driven query answering for distributed autonomous knowledge systems, International Journal of Intelligent Systems, 17, 2, 113-124 (2002) · Zbl 1012.68014
[255] Rasiowa, H., Axiomatization and completeness of uncountably valued approximation logic, Studia Logica, 53, 1, 137-160 (1994) · Zbl 0787.03015
[256] Rasiowa, H.; Skowron, A., Approximation logic, (Bibel, W.; Jantke, K. P., Mathematical Methods of Specification and Synthesis of Software Systems. Mathematical Methods of Specification and Synthesis of Software Systems, Mathematical Research, vol. 31 (1985), Akademie Verlag: Akademie Verlag Berlin), 123-139
[259] Rauszer, C., An equivalence between theory of functional dependence and a fragment of intuitionistic logic, Bulletin of the Polish Academy of Sciences, Mathematics, 33, 571-579 (1985) · Zbl 0583.68054
[260] Rauszer, C., Logic for information systems, Fundamenta Informaticae, 16, 371-382 (1992) · Zbl 0768.68199
[261] Rauszer, C., Knowledge representation systems for groups of agents, (Wroński, J., Philosophical Logic in Poland (1994), Kluwer: Kluwer Dordrecht, Netherlands), 217-238
[262] Read, S., Thinking about Logic: An Introduction to the Philosophy of Logic (1994), Oxford University Press: Oxford University Press Oxford, New York
[263] Rissanen, J., Modeling by shortes data description, Automatica, 14, 465-471 (1978) · Zbl 0418.93079
[264] Rissanen, J., Minimum-description-length principle, (Kotz, S.; Johnson, N., Encyclopedia of Statistical Sciences (1985), John Wiley & Sons: John Wiley & Sons New York, NY), 523-527
[265] Roy, A.; Pal, S. K., Fuzzy discretization of feature space for a rough set classifier, Pattern Recognition Letters, 24, 6, 895-902 (2003) · Zbl 1053.68091
[266] Russell, B., The Principles of Mathematics (1903), George Allen & Unwin Ltd.: George Allen & Unwin Ltd. London, Great Britain, (2nd Edition in 1937) · JFM 34.0062.14
[267] Russell, B., Vagueness, The Australian Journal of Psychology and Philosophy, 1, 84-92 (1923)
[268] Russell, B., An Inquiry into Meaning and Truth (1940), George Allen & Unwin Ltd. and W.W. Norton,: George Allen & Unwin Ltd. and W.W. Norton, London and New York
[269] Sever, H.; Raghavan, V. V.; Johnsten, T. D., The status of research on rough sets for knowledge discovery in databases, (Sivasundaram, S., Proceedings of the Second Internationall Conference on Nonlinear Problems in Aviation and Aerospace (ICNPAA’1998), April 29-May 1, 1998, Daytona Beach, FL, vol. 2 (1998), Embry-Riddle Aeronautical University: Embry-Riddle Aeronautical University Daytona Beach, FL), 673-680
[270] Shan, N.; Ziarko, W., An incremental learning algorithm for constructing decision rules, (Ziarko, W., Rough Sets, Fuzzy Sets and Knowledge Discovery (1994), Springer Verlag: Springer Verlag Berlin), 326-334 · Zbl 0941.68698
[271] Simons, P., A Study in Ontology (1987), Oxford University Press: Oxford University Press Oxford, UK
[272] (Skowron, A., Proceedings of the 5th Symposium on Computation Theory, Zaborów, Poland, 1984. Proceedings of the 5th Symposium on Computation Theory, Zaborów, Poland, 1984, Lecture Notes in Computer Science, vol. 208 (1985), Springer-Verlag: Springer-Verlag Berlin)
[273] Skowron, A., Boolean reasoning for decision rules generation, (Komorowski, J.; Raś, Z. W., Proceedings of ISMIS’1993, Trondheim, Norway, June 15-18, 1993. Proceedings of ISMIS’1993, Trondheim, Norway, June 15-18, 1993, Lecture Notes in Artificial Intelligence, vol. 689 (1993), Springer-Verlag), 295-305
[274] Skowron, A., Extracting laws from decision tables, Computational Intelligence: An International Journal, 11, 371-388 (1995)
[275] Skowron, A., Rough sets in KDD - plenary talk, (Shi, Z.; Faltings, B.; Musen, M., 16th World Computer Congress (IFIP’2000): Proceedings of Conference on Intelligent Information Processing (IIP’2000) (2000), Publishing House of Electronic Industry: Publishing House of Electronic Industry Beijing), 1-14
[276] Skowron, A., Rough sets and boolean reasoning, (Pedrycz, W., Granular Computing: an Emerging Paradigm. Granular Computing: an Emerging Paradigm, Studies in Fuzziness and Soft Computing, vol. 70 (2001), Springer-Verlag/Physica-Verlag: Springer-Verlag/Physica-Verlag Heidelberg), 95-124 · Zbl 0986.68143
[278] Skowron, A., Rough sets and vague concepts, Fundamenta Informaticae, 64, 1-4, 417-431 (2005) · Zbl 1102.68131
[279] Skowron, A.; Grzymała-Busse, J. W., From rough set theory to evidence theory, (Yager, R.; Fedrizzi, M.; Kacprzyk, J., Advances in the Dempster-Shafer Theory of Evidence (1994), John Wiley & Sons: John Wiley & Sons New York, NY), 193-236
[281] Skowron, A.; Pal, S. K., Rough sets, pattern recognition and data mining. Rough sets, pattern recognition and data mining, Pattern Recognition Letters, vol. 24, 6 (2003), (Special volume)
[282] Skowron, A.; Pawlak, Z.; Komorowski, J.; Polkowski, L., A rough set perspective on data and knowledge, (Kloesgen, W.; Żytkow, J., Handbook of KDD (2002), Oxford University Press: Oxford University Press Oxford), 134-149
[285] Skowron, A.; Stepaniuk, J., Tolerance approximation spaces, Fundamenta Informaticae, 27, 2-3, 245-253 (1996) · Zbl 0868.68103
[288] Skowron, A.; Stepaniuk, J.; Peters, J. F., Rough sets and infomorphisms: towards approximation of relations in distributed environments, Fundamenta Informaticae, 54, 1-2, 263-277 (2003) · Zbl 1111.68706
[291] Skowron, A.; Synak, P., Complex patterns, Fundamenta Informaticae, 60, 1-4, 351-366 (2004) · Zbl 1083.68122
[292] Skowron, A.; Synak, P., Reasoning in information maps, Fundamenta Informaticae, 59, 2-3, 241-259 (2004) · Zbl 1098.68132
[293] (Skowron, A.; Szczuka, M., Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003, April 12-13, 2003. Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003, April 12-13, 2003, Electronic Notes in Computer Science, vol. 82(4) (2003), Elsevier: Elsevier Amsterdam, Netherlands), Available from:
[296] Śle¸zak, D., Normalized decision functions and measures for inconsistent decision tables analysis, Fundamenta Informaticae, 44, 291-319 (2000) · Zbl 0970.68171
[298] Śle¸zak, D., Approximate entropy reducts, Fundamenta Informaticae, 53, 365-387 (2002) · Zbl 1092.68676
[300] (Śle¸zak, D.; Wang, G.; Szczuka, M.; Düntsch, I.; Yao, Y., Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, August 31-September 3, 2005, Part I. Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, August 31-September 3, 2005, Part I, Lecture Notes in Artificial Intelligence, vol. 3641 (2005), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1086.68007
[301] (Śle¸zak, D.; Yao, J. T.; Peters, J. F.; Ziarko, W.; Hu, X., Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, August 31-September 3, 2005, Part II. Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Regina, Canada, August 31-September 3, 2005, Part II, Lecture Notes in Artificial Intelligence, vol. 3642 (2005), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1086.68008
[302] Śle¸zak, D.; Ziarko, W., The investigation of the Bayesian rough set model, International Journal of Approximate Reasoning, 40, 81-91 (2005) · Zbl 1099.68089
[303] Słowiński, K.; Słowiński, R.; Stefanowski, J., Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis, Medical Informatics, 13, 3, 143-159 (1998)
[305] (Słowiński, R., Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory, System Theory. Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, vol. 11 (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, The Netherlands) · Zbl 0820.68001
[307] Słowiński, R.; Stefanowski, J., Rough set reasoning about uncertain data, Fundamenta Informaticae, 27, 229-244 (1996) · Zbl 0854.68098
[308] Słowiński, R.; Stefanowski, J.; Greco, S.; Matarazzo, B., Rough sets processing of inconsistent information, Control and Cybernetics, 29, 379-404 (2000) · Zbl 1030.90045
[309] Słowiński, R.; Stefanowski, J.; Siwiński, D., Application of rule induction and rough sets to verification of magnetic resonance diagnosis, Fundamenta Informaticae, 53, 345-363 (2002) · Zbl 1045.68918
[310] Słowiński, R.; Vanderpooten, D., Similarity relation as a basis for rough approximations, (Wang, P., Advances in Machine Intelligence and Soft Computing, vol. 4 (1997), Duke University Press: Duke University Press Duke, NC), 17-33
[311] Smith, B., Formal ontology, common sense and cognitive science, International Journal of Human-Computer Studies, 43, 641-667 (1995)
[312] Stefanowski, J.; Tsoukiàs, A., Incomplete information tables and rough classification, Computational Intelligence, 17, 3, 545-566 (2001)
[313] Stefanowski, J.; Wilk, S., Minimizing business credit risk by means of approach integrating decision rules and case based learning, Journal of Intelligent Systems in Accounting, Finance and Management, 10, 97-114 (2001)
[314] Stell, J. G., Boolean connection algebras: A new approach to the region-connection calculus, Artificial Intelligence, 122, 111-136 (2000) · Zbl 0948.68142
[324] Swiniarski, R.; Hargis, L., Rough sets as a front end of neural networks texture classifiers, Neurocomputing, 36, 1-4, 85-103 (2001) · Zbl 1003.68642
[326] Szczuka, M., Refining classifiers with neural networks, International Journal of Intelligent Systems, 16, 39-55 (2001) · Zbl 0969.68140
[327] Szczuka, M.; Wojdyłło, P., Neuro-wavelet classifiers for EEG signals based on rough set methods, Neurocomputing, 36, 103-122 (2001) · Zbl 1003.68640
[329] Tanaka, H.; Lee, H., Interval regression analysis with polynomials and its similarity to rough sets concept, Fundamenta Informaticae, 37, 1-2, 71-87 (1999) · Zbl 0930.68043
[330] Tarski, A., Logic, Semantics, Metamathematics (1983), Oxford University Press: Oxford University Press Oxford, UK, [translated by J.H. Woodger]
[331] (Terano, T.; Nishida, T.; Namatame, A.; Tsumoto, S.; Ohsawa, Y.; Washio, T., New Frontiers in Artificial Intelligence, Joint JSAI’2001 Workshop Post-Proceedings. New Frontiers in Artificial Intelligence, Joint JSAI’2001 Workshop Post-Proceedings, Lecture Notes in Artificial Intelligence, vol. 2253 (2001), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 0984.00057
[332] Tsumoto, S., Automated induction of medical expert system rules from clinical databases based on rough set theory, Information Sciences, 112, 67-84 (1998)
[334] Tsumoto, S., Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model, Information Sciences, 162, 2, 65-80 (2004)
[335] Tsumoto, S.; Hirano, S., Automated discovery of chronological patterns in long time-series medical datasets, International Journal of Intelligent Systems, 20, 6, 737-757 (2005)
[337] (Tsumoto, S.; Słowiński, R.; Komorowski, J.; Grzymała-Busse, J., Proceedings of the 4th International Conference on Rough Sets and Current Trends in Computing (RSCTC’2004), Uppsala, Sweden, June 1-5, 2004. Proceedings of the 4th International Conference on Rough Sets and Current Trends in Computing (RSCTC’2004), Uppsala, Sweden, June 1-5, 2004, Lecture Notes in Artificial Intelligence, vol. 3066 (2004), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1088.68009
[338] Tsumoto, S.; Tanaka, H., PRIMEROSE: probabilistic rule induction method based on rough sets and resampling methods, Computational Intelligence: An International Journal, 11, 389-405 (1995)
[339] Tsumoto, S.; Ziarko, W., The application of rough sets-based data mining technique to differential diagnosis of meningoenchepahlitis, (Raś, Z. W.; Michalewicz, M., Ninth International Symposium on Methodologies for Intelligent Systems ISMIS’1996. Ninth International Symposium on Methodologies for Intelligent Systems ISMIS’1996, Lecture Notes in Artificial Intelligence, vol. 1079 (1996), Springer-Verlag: Springer-Verlag Zakopane, Poland), 438-447
[340] Vakarelov, D., A modal logic for similarity relations in Pawlak knowledge representation systems, Fundamenta Informaticae, 15, 1, 61-79 (1991) · Zbl 0737.68078
[341] Vakarelov, D., Modal logics for knowledge representation systems, Theoretical Computer Science, 90, 2, 433-456 (1991) · Zbl 0755.68131
[342] Vakarelov, D., A duality between Pawlak’s knowledge representation systems and bi-consequence systems, Studia Logica, 55, 1, 205-228 (1995) · Zbl 0839.68098
[345] Varzi, A. C., Change, temporal parts, and the argument from vagueness, Dialectica, 59, 4, 485-498 (2005)
[347] Vopenka, P., Mathematics in the Alternative Set Theory (1979), Teubner: Teubner Leipzig · Zbl 0499.03042
[348] Wakulicz-Deja, A.; Paszek, P., Diagnose progressive encephalopathy applying the rough set theory, International Journal of Medical Informatics, 46, 2, 119-127 (1997)
[349] Wakulicz-Deja, A.; Paszek, P., Applying rough set theory to multi stage medical diagnosing, Fundamenta Informaticae, 54, 4, 387-408 (2003) · Zbl 1039.92023
[350] (Wang, G.; Liu, Q.; Yao, Y.; Skowron, A., Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2003), Chongqing, China, May 26-29, 2003. Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2003), Chongqing, China, May 26-29, 2003, Lecture Notes in Artificial Intelligence, vol. 2639 (2003), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1019.00015
[351] Wang, J.; Jia, C.; Zhao, K., Investigation on AQ11, ID3 and the principle of discernibility matrix, Journal of Computer Science and Technology, 16, 1, 1-12 (2001) · Zbl 0974.68175
[352] Wang, J.; Ju, W., Reduction algorithms based on discernibility matrix: the ordered attributes method, Journal of Computer Science and Technology, 16, 6, 489-504 (2001) · Zbl 1014.68160
[354] Wasilewska, A.; Vigneron, L., Rough equality algebras, (Proceedings of the Second Joint Annual Conference on Information Sciences (1995), Wrightsville Beach: Wrightsville Beach North Carolina, USA), 26-30
[356] Wieczorkowska, A.; Wróblewski, J.; Synak, P.; Śle¸zak, D., Application of temporal descriptors to musical instrument sound recognition, Journal of Intelligent Information Systems, 21, 1, 71-93 (2003)
[358] Wong, S. K.M.; Ziarko, W., Comparison of the probabilistic approximate classification and the fuzzy model, Fuzzy Sets and Systems, 21, 357-362 (1987) · Zbl 0618.60002
[359] Wróblewski, J., Theoretical foundations of order-based genetic algorithms, Fundamenta Informaticae, 28, 423-430 (1996) · Zbl 0866.68043
[362] Wu, W.-Z.; Mi, J.-S.; Zhang, W.-X., Generalized fuzzy rough sets, Information Sciences, 151, 263-282 (2003) · Zbl 1019.03037
[363] Wu, W.-Z.; Zhang, W.-X., Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences, 159, 2, 233-254 (2004) · Zbl 1071.68095
[365] Yao, Y. Y., Information granulation and rough set approximation, International Journal of Intelligent Systems, 16, 87-104 (2001) · Zbl 0969.68079
[367] Yao, Y. Y., Probabilistic approaches to rough sets, Expert Systems, 20, 287-297 (2003)
[368] Yao, Y. Y.; Lingras, P., Interpretation of belief functions in the theory of rough sets, Information Sciences, 104, 1-2, 81-106 (1998) · Zbl 0923.04007
[370] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 338-353 (1965) · Zbl 0139.24606
[371] Zhang, W.-X.; Mi, J.-S.; Wu, W.-Z., Approaches to knowledge reductions in inconsistent systems, International Journal of Intelligent Systtems, 18, 9, 989-1000 (2003) · Zbl 1069.68606
[372] Zheng, Z.; Wang, G., RRIA: A rough set and rule tree based incremental knowledge acquisition algorithm, Fundamenta Informaticae, 59, 2-3, 299-313 (2004) · Zbl 1098.68711
[373] Zhong, N.; Dong, J.; Ohsuga, S., Meningitis data mining by cooperatively using GDT-RS and RSBR, Pattern Recognition Letters, 24, 6, 887-894 (2003) · Zbl 1053.68099
[374] (Zhong, N.; Liu, J., Intelligent Technologies for Information Analysis (2004), Springer: Springer Heidelberg) · Zbl 1058.68099
[375] Ziarko, W., Variable precision rough set model, Journal of Computer and System Sciences, 46, 39-59 (1993) · Zbl 0764.68162
[376] (Ziarko, W., Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings of the Second International Workshop on Rough Sets and Knowledge Discovery (RSKD’93), Banff, Alberta, Canada, October 12-15, 1993. Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings of the Second International Workshop on Rough Sets and Knowledge Discovery (RSKD’93), Banff, Alberta, Canada, October 12-15, 1993, Workshops in Computing (1994), Springer-Verlag & British Computer Society: Springer-Verlag & British Computer Society London, Berlin)
[377] Ziarko, W., Computational Intelligence. Computational Intelligence, An International Journal, 11, 2 (1995), Special issue
[378] Ziarko, W., Fundamenta Informaticae, 27, 2-3 (1996), Special issue
[379] Ziarko, W., Probabilistic decision tables in the variable precision rough set model, Computational Intelligence, 17, 593-603 (2001)
[380] (Ziarko, W.; Yao, Y., Proceedings of the 2nd International Conference on Rough Sets and Current Trends in Computing (RSCTC’2000), Banff, Canada, October 16-19, 2000. Proceedings of the 2nd International Conference on Rough Sets and Current Trends in Computing (RSCTC’2000), Banff, Canada, October 16-19, 2000, Lecture Notes in Artificial Intelligence, vol. 2005 (2001), Springer-Verlag: Springer-Verlag Heidelberg)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.