zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A quasistatic contact problem with normal compliance and damage involving viscoelastic materials with long memory. (English) Zbl 1142.74031
Summary: We study a model for quasistatic frictionless contact between a viscoelastic body with long memory and a foundation. The material constitutive relation is assumed to be nonlinear, and the contact is modelled with the normal compliance condition, i.e., the obstacle is assumed deformable. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, which is modelled by a nonlinear partial differential equation. We derive a variational formulation for the problem and prove the existence of its unique weak solution. Then, we introduce a fully discrete scheme for the numerical solutions of the problem, based on the finite element method to approximate the spatial variable and on Euler scheme to discretize the time derivatives, and we obtain error estimates for approximate solutions. Finally, some numerical results are presented for two-dimensional test problems.

74M15Contact (solid mechanics)
74D05Linear constitutive equations (materials with memory)
74H20Existence of solutions for dynamical problems in solid mechanics
74H25Uniqueness of solutions for dynamical problems in solid mechanics
74S05Finite element methods in solid mechanics
74S20Finite difference methods in solid mechanics
Full Text: DOI
[1] Andrews, K. T.; Fernández, J. R.; Shillor, M.: Numerical analysis of dynamic thermoviscoelastic contact with damage of a rod. IMA J. Appl. math. 70, No. 6, 768-795 (2005) · Zbl 1171.74386
[2] Angelov, T. A.: On a rolling problem with damage and wear. Mech. res. Comm. 26, 281-286 (1999) · Zbl 0945.74660
[3] Bermúdez, A.; Moreno, C.: Duality methods for solving variational inequalities. Comp. math. Appl. 7, 43-58 (1981) · Zbl 0456.65036
[4] Bonetti, E.; Frémond, M.: Damage theory: microscopic effects of vanishing macroscopic motions. Comp. appl. Math. 22, No. 3, 313-333 (2003) · Zbl 1213.74037
[5] Bonetti, E.; Schimperna, G.: Local existence for frémond’s model of damage in elastic materials. Comp. mech. Thermodyn. 16, No. 4, 319-335 (2004) · Zbl 1066.74048
[6] Campo, M.; Fernández, J. R.; Han, W.; Sofonea, M.: A dynamic viscoelastic contact problem with normal compliance and damage. Finite elem. Anal. des. 42, 1-24 (2005)
[7] Campo, M.; Fernández, J. R.; Hoarau-Mantel, T. -V.: Analysis of two frictional viscoplastic contact problems with damage. J. comput. Appl. math. 196, No. 1, 180-197 (2006) · Zbl 1095.74022
[8] Campo, M.; Fernández, J. R.; Kuttler, K. L.: An elastic-viscoplastic contact problem with damage. Comput. methods appl. Mech. engrg. 196, No. 33 -- 34, 3219-3229 (2007) · Zbl 1173.74359
[9] Campo, M.; Fernández, J. R.; Kuttler, K. L.; Shillor, M.: Quasistatic evolution of damage in an elastic body: numerical analysis and computational experiments. Appl. numer. Math. 57, No. 9, 975-988 (2007) · Zbl 1116.74058
[10] Chau, O.; Fernández, J. R.: A convergence result in elastic-viscoplastic contact problems with damage. Math. comp. Modelling 37, 301-321 (2003) · Zbl 1077.74034
[11] Chau, O.; Fernández, J. R.; Han, W.; Sofonea, M.: A frictionless contact problem for elastic-viscoplastic materials with normal compliance and damage. Comput. methods appl. Mech. engrg. 191, 5007-5026 (2002) · Zbl 1042.74039
[12] Chen, J.; Han, W.; Sofonea, M.: Numerical analysis of a nonlinear evolutionary system with applications in viscoplasticity. SIAM J. Numer. anal. 38, No. 4, 1171-1199 (2000) · Zbl 0980.65105
[13] Ciarlet, P. G.: The finite element method for elliptic problems. Handbook of numerical analysis, vol. II, part 1, 17-352 (1991)
[14] Duvaut, G.; Lions, J. L.: Inequalities in mechanics and physics. (1976) · Zbl 0331.35002
[15] Figueiredo, I.; Trabucho, L.: A class of contact and friction dynamic problems in thermoelasticity and in thermoviscoelasticity. Internat. J. Engrg. sci. 33, No. 1, 45-66 (1995) · Zbl 0899.73473
[16] Frémond, M.: Non-smooth thermomechanics. (2002) · Zbl 0990.80001
[17] Frémond, M.; Nedjar, B.: Damage in concrete: the unilateral phenomenon. Nuclear eng. Design 156, 323-335 (1995)
[18] Frémond, M.; Nedjar, B.: Damage, gradient of damage and principle of virtual work. Internat. J. Solids structures 33, 1083-1103 (1996) · Zbl 0910.73051
[19] Glowinski, R.: Numerical methods for nonlinear variational problems. (1984) · Zbl 0536.65054
[20] Han, W.; Shillor, M.; Sofonea, M.: Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. comput. Appl. math. 137, 377-398 (2001) · Zbl 0999.74087
[21] Han, W.; Sofonea, M.: Quasistatic contact problems in viscoelasticity and viscoplasticity. (2002) · Zbl 1013.74001
[22] Klarbring, A.; Mikelić, A.; Shillor, M.: Frictional contact problems with normal compliance. Internat. J. Engrg. sci. 26, 811-832 (1988) · Zbl 0662.73079
[23] Kuttler, K. L.: Quasistatic evolution of damage in an elastic-viscoplastic material. Electron. J. Differential equations 147, 1-25 (2005) · Zbl 1082.74005
[24] Kuttler, K. L.; Shillor, M.: Quasistatic evolution of damage in an elastic body. Nonlinear anal. Real world. Appl. 7, No. 4, 674-699 (2006) · Zbl 1103.74050
[25] Lemaitre, J.; Chaboche, J. L.: Mécanique des matériaux solides. (1988)
[26] Liebe, R.; Steinmann, P.; Benallal, A.: Theoretical and numerical aspects of a thermodynamically consistent framework for geometrically linear gradient damage. Comput. methods appl. Mech. engrg. 190, 6555-6576 (2001) · Zbl 0991.74010
[27] Lions, J. L.; Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. (1968) · Zbl 0165.10801
[28] Miehe, C.: Discontinuous and continuous damage evolution in ogden-type large-strain elastic materials. Eur. J. Mech. A solids 14, No. 3, 697-720 (1995) · Zbl 0837.73054
[29] Nedjar, B.: Elastoplastic-damage modelling including the gradient of damage. Formulation and computational aspects. Internat. J. Solids structures 38, 5421-5451 (2001) · Zbl 1013.74061
[30] Pipkin, A. C.: Lectures in viscoelasticity theory. Applied mathematical sciences 7 (1972) · Zbl 0237.73022
[31] Rodríguez-Arós, A.; Viaño, J. M.; Sofonea, M.: ’A class of evolutionary variational inequalities with Volterra-type term. Math. models methods appl. Sci. 14, No. 4, 557-577 (2004) · Zbl 1077.74035
[32] Shillor, M.; Sofonea, M.; Telega, J. J.: Models and variational analysis of quasistatic contact. Lecture notes in physics 655 (2004) · Zbl 1069.74001
[33] Sofonea, M.; Rodríguez-Arós, A.; Viaño, J. M.: A class of integro-differential variational inequalities with applications to viscoelastic contact. Math. comput. Modelling 41, No. 11 -- 12, 1355-1369 (2005) · Zbl 1080.47052
[34] Zienkiewicz, O. C.; Taylor, R. L.: The finite element method, vol. 2, solid mechanics. (1989) · Zbl 0991.74002