×

Dynamic bilateral contact problem for viscoelastic piezoelectric materials with adhesion. (English) Zbl 1142.74032

Summary: We examine a model of dynamic viscoelastic adhesive contact between a piezoelectric body and deformable foundation. The model consists of a system of hemivariational inequalities of hyperbolic type for displacement, a time-dependent elliptic equation for electric potential and an ordinary differential equation for adhesion field. In the hemivariational inequalities the friction forces are derived from a nonconvex superpotential through the generalized Clarke subdifferential. The existence of a weak solution is proved by embedding the problem into a class of second-order evolution inclusions and by applying a surjectivity result for multivalued operators.

MSC:

74M15 Contact in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74H20 Existence of solutions of dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aubin, J. P.; Cellina, A., Differential Inclusions. Set-Valued Maps and Viability Theory (1984), Springer-Verlag: Springer-Verlag Berlin, New York, Tokyo · Zbl 0538.34007
[2] Carl, S.; Gilbert, R. P., Extremal solutions of a class of dynamic hemivariational inequalities, J. Inequal. Appl., 7, 4, 479-502 (2002) · Zbl 1012.35052
[3] Chau, O.; Shillor, M.; Sofonea, M., Dynamic frictionless contact with adhesion, Z. Angew. Math. Phys., 55, 32-47 (2004) · Zbl 1064.74132
[4] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), Wiley, Interscience: Wiley, Interscience New York · Zbl 0727.90045
[5] Denkowski, Z.; Migórski, S.; Papageorgiou, N. S., An Introduction to Nonlinear Analysis: Theory (2003), Kluwer Academic/Plenum Publishers: Kluwer Academic/Plenum Publishers Boston, Dordrecht, London, New York · Zbl 1040.46001
[6] Denkowski, Z.; Migórski, S.; Papageorgiou, N. S., An Introduction to Nonlinear Analysis: Applications (2003), Kluwer Academic/Plenum Publishers: Kluwer Academic/Plenum Publishers Boston, Dordrecht, London, New York · Zbl 1030.35106
[7] Essoufi, El-H.; Kabbaj, M., Existence of solutions of a dynamic Signorini’s problem with nonlocal friction for viscoelastic piezoelectric materials, Bull. Math. Soc. Sci. Math. Roumanie, 48, 96, 181-195 (2005) · Zbl 1249.35098
[8] Frémond, M., Adhérence des solides, J. Mécanique Théorique et Appliquée, 6, 383-407 (1987) · Zbl 0645.73046
[9] Frémond, M., Non-Smooth Thermomechanics (2002), Springer: Springer Berlin · Zbl 0990.80001
[10] Ikeda, T., Fundamentals of Piezoelectricity (1990), Oxford University Press: Oxford University Press Oxford
[11] Maceri, F.; Bisegna, P., The unilateral frictionless contact of a piezoelectric body with a rigid support, Math. Comput. Modelling, 28, 19-28 (1998) · Zbl 1126.74392
[12] Migórski, S., Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Appl. Anal., 84, 669-699 (2005) · Zbl 1081.74036
[13] Migórski, S., Boundary hemivariational inequalities of hyperbolic type and applications, J. Global Optim., 31, 505-533 (2005) · Zbl 1089.49014
[14] Migórski, S., Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete Contin. Dyn. Syst. Ser. B, 6, 6, 1339-1356 (2006) · Zbl 1109.74039
[15] Migórski, S., Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems, Comp. Math. Appl., 52, 677-698 (2006) · Zbl 1121.74047
[16] Migórski, S.; Ochal, A., Hemivariational inequality for viscoelastic contact problem with slip dependent friction, Nonlinear Anal., 61, 135-161 (2005) · Zbl 1190.74020
[17] Migórski, S.; Ochal, A., A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83, 247-275 (2006) · Zbl 1138.74375
[18] Ochal, A., Existence results for evolution hemivariational inequalities of second order, Nonlinear Anal., 60, 1369-1391 (2005) · Zbl 1082.34052
[19] Ouafik, Y., A piezoelectric body in frictional contact, Bull. Math. Soc. Sci. Math. Roumanie, 48, 96, 233-242 (2005) · Zbl 1114.74038
[20] Panagiotopoulos, P. D., Hemivariational Inequalities, Applications in Mechanics and Engineering (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0826.73002
[21] Selmani, M.; Sofonea, M., Viscoelastic frictionless contact problems with adhesion, J. Inequal. Appl., 2006, 22 (2006) · Zbl 1128.74034
[22] Shillor, M.; Sofonea, M.; Telega, J. J., Models and Analysis of Quasistatic Contact (2004), Springer: Springer Berlin · Zbl 1180.74046
[23] Sofonea, M.; Arhab, R.; Tarraf, R., Analysis of electroelastic frictionless contact problems with adhesion, J. Appl. Math., 2006, 25 (2006) · Zbl 1143.74042
[24] Sofonea, M.; Essoufi, El-H., A piezoelectric contact problem with slip dependent coefficient of friction, Math. Model. Anal., 9, 229-242 (2004) · Zbl 1092.74029
[25] Sofonea, M.; Han, W.; Shillor, M., (Analysis and Approximation of Contact Problems with Adhesion or Damage. Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, vol. 276 (2006), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton) · Zbl 1089.74004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.