## Continuous-time random walk and parametric subordination in fractional diffusion.(English)Zbl 1142.82363

Summary: The well-scaled transition to the diffusion limit in the framework of the theory of continuous-time random walk (CTRW) is presented starting from its representation as an infinite series that points out the subordinated character of the CTRW itself. We treat the CTRW as a combination of a random walk on the axis of physical time with a random walk in space, both walks happening in discrete operational time. In the continuum limit, we obtain a (generally non-Markovian) diffusion process governed by a space-time fractional diffusion equation. The essential assumption is that the probabilities for waiting times and jump-widths behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. By what we call parametric subordination, applied to a combination of a Markov process with a positively oriented Lévy process, we generate and display sample paths for some special cases.

### MSC:

 82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics 82C70 Transport processes in time-dependent statistical mechanics
Full Text:

### References:

 [1] Baeumer, B.; Meerschaert, M.M., Stochastic solutions for fractional Cauchy problems, Fract calcul appl anal, 4, 481-500, (2001) · Zbl 1057.35102 [2] Balescu, R., Statistical dynamics: matter out of equilibrium, (1994), Imperial College Press-World Scientific London, [Chapter 12], pp. 199-229 [3] Barkai, E., Fractional fokker – planck equation, solution, and application, Phys rev E, 63, (2001), 046118-1/18 [4] Barkai, E., CTRW pathways to the fractional diffusion equation, Chem phys, 284, 13-27, (2002) [5] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walk to fractional fokker – planck equation, Phys rev E, 61, 132-138, (2000) [6] () [7] Bochner, S., Harmonic analysis and the theory of probability, (1955), University of California Press Berkeley · Zbl 0068.11702 [8] Bochner, S., Subordination of non-Gaussian stochastic processes, Proc natl acad sci USA, 48, 19-22, (1962) · Zbl 0105.33002 [9] Cox, D.R., Renewal theory, (1967), Methuen London · Zbl 0168.16106 [10] Feller, W., An introduction to probability theory and its applications, vol. 2, (1971), Wiley New York · Zbl 0219.60003 [11] Gel‘fand, I.M.; Shilov, G.E., Generalized functions, vol. I, (1964), Academic Press New York and London [12] Gorenflo, R.; Abdel-Rehim, E., From power laws to fractional diffusion: the direct way, Viet J math, 32, SI, 65-75, (2004) · Zbl 1086.60049 [13] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (), 223-276, Reprinted in [14] Gorenflo, R.; Mainardi, F., Fractional diffusion processes: probability distributions and continuous time random walk, (), 148-166 [15] Gorenflo R, Mainardi F, Simply and multiply scaled diffusion limits for continuous time random walks. In: Benkadda S, Leoncini X, Zaslavsky G. editors. Proceedings of the international workshop on chaotic transport and complexity in fluids and plasmas Carry Le Rouet (France) 20-25 June 2004, IOP (Institute of Physics) Journal of Physics: Conference Series 7; 2005. p. 1-16. [16] Gorenflo, R.; Mainardi, F.; Scalas, E.; Raberto, M., Fractional calculus and continuous-time finance III: the diffusion limit, (), 171-180 · Zbl 1138.91444 [17] Grigolini, P.; Rocco, A.; West, B.J., Fractional calculus as a macroscopic manifestation of randomness, Phys rev E, 59, 2603-2613, (1999) [18] Hilfer, R., Exact solutions for a class of fractal time random walks, Fractals, 3, 211-216, (1995) · Zbl 0881.60066 [19] () [20] Hilfer, R., On fractional diffusion and continuous time random walks, Physica A, 329, 35-39, (2003) · Zbl 1029.60033 [21] Hilfer, R.; Anton, L., Fractional master equations and fractal time random walks, Phys rev E, 51, R848-R851, (1995) [22] Jacob N. Pseudodifferential operators - Markov processes, vol. I: Fourier analysis and semigroups vol. II: Generators and their potential theory, vol. III: Markov Processes and Applications, Imperial College Press, London (2001), (2002), (2005). [23] Janicki, A., Numerical and statistical approximation of stochastic differential equations with non-Gaussian measures monograph, no. 1, (1996), H. Steinhaus Center for Stochastic Methods in Science and Technology Technical University Wroclaw, Poland [24] Janicki, A.; Weron, A., Simulation and chaotic behavior of α-stable stochastic processes, (1994), Marcel Dekker New York [25] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier Amsterdam · Zbl 1092.45003 [26] Kotulski, M., Asymptotic distributions of continuous-time random walks: a probabilistic approach, J stat phys, 81, 777-792, (1995) · Zbl 1107.60318 [27] Mainardi, F.; Luchko, Yu.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract calcul appl anal, 4, 153-192, (2001), Reprinted in: · Zbl 1054.35156 [28] Mainardi, F.; Pagnini, G.; Gorenflo, R., Mellin transform and subordination laws in fractional diffusion processes, Fract calcul appl anal, 6, 441-459, (2003) · Zbl 1083.60032 [29] Mainardi, F.; Pagnini, G.; Saxena, R.K., Fox H functions in fractional diffusion, J computat appl math, 178, 321-331, (2005) · Zbl 1061.33012 [30] Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E., Fractional calculus and continuous-time finance II: the waiting-time distribution, Physica A, 287, 468-481, (2000) [31] Mannella, R.; Grigolini, P.; West, B.J., A dynamical approach to fractional Brownian motion, Fractals, 2, 81-94, (1994) [32] Meerschaert, M.M.; Benson, D.A.; Scheffler, H.P.; Baeumer, B., Stochastic solutions of space-fractional diffusion equation, Phys rev E, 65, (2002), 041103-1/4 [33] Meerschaert, M.M.; Benson, D.A.; P Scheffler, H.; Becker-Kern, P., Governing equations and solutions of anomalous random walk limits, Phys rev E, 66, (2002), 060102-1/4 [34] Metzler, R.; Klafter, J.; Sokolov, I.M., Anomalous transport in external fields: continuous time random walks and fractional diffusion equations extended, Phys rev E, 58, 1621-1633, (1998) [35] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys rep, 339, 1-77, (2000) · Zbl 0984.82032 [36] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J phys A math gen, 37, R161-R208, (2004) · Zbl 1075.82018 [37] Montroll, E.W.; Scher, H., Random walks on lattices IV: continuous-time walks and influence of absorbing boundaries, J stat phys, 9, 101-135, (1973) [38] Montroll, E.W.; Shlesinger, M.F., On the wonderful world of random walks, (), 1-121 [39] Montroll, E.W.; Weiss, G.H., Random walks on lattices II, J math phys, 6, 167-181, (1965) · Zbl 1342.60067 [40] Montroll, E.W.; West, B.J., On an enriched collection of stochastic processes, (), 61-175 [41] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010 [42] Piryatinska, A.; Saichev, A.I.; Woyczynski, W.A., Models of anomalous diffusion: the subdiffusive case, Physica A, 349, 375-420, (2005) [43] Saichev, A.; Zaslavsky, G., Fractional kinetic equations: solutions and applications, Chaos, 7, 753-764, (1997) · Zbl 0933.37029 [44] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach New York · Zbl 0818.26003 [45] Sato, K-I., Lévy processes and infinitely divisible distributions, (1999), Cambridge University Press Cambridge · Zbl 0973.60001 [46] Scalas, E., The application of continuous-time random walks in finance and economics, Physica A, 362, 225-239, (2006) [47] Scalas, E.; Gorenflo, R.; Mainardi, F., Fractional calculus and continuous-time finance, Physica A, 284, 376-384, (2000) [48] Scalas, E.; Gorenflo, R.; Mainardi, F., Uncoupled continuous-time random walks: solution and limiting behavior of the master equation, Phys rev E, 69, (2004), 011107-1/8 [49] Shlesinger, M.F.; Zaslavsky, G.M.; Klafter, J., Strange kinetics, Nature, 363, 31-37, (1993) [50] Sokolov, I.M., Lévy flights from a continuous-time process, Phys rev E, 63, (2001), 011104-1/10 [51] Sokolov, I.M., Thermodynamics and fractional fokker – planck equation, Phys. rev. E, 63, (2001), 056111-1/8 [52] Sokolov, I.M., Solutions of a class of non-Markovian fokker – planck equations, Phys rev E, 66, (2002), 041101-1/5 [53] Sokolov, I.M.; Klafter, J.; Blumen, A., Linear response in complex systems: CTRW and the fractional fokker – planck equations, Physica A, 302, 268-278, (2001) · Zbl 0983.60040 [54] Sokolov, I.M.; Klafter, J., From diffusion to anomalous diffusion: a century after einstein’s Brownian motion, Chaos, 15, 026103-026109, (2005) · Zbl 1080.82022 [55] Sokolov, I.M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys today, 55, 48-54, (2002) [56] Stanislavski, A.A., Memory effects and macroscopic manifestation of randomness, Phys rev E, 61, 4752-4759, (2000) [57] Stanislavsky, A.A., Black – scholes model under subordination, Physica A, 318, 469-474, (2003) · Zbl 1010.91029 [58] Uchaikin, V.V.; Saenko, V.V., Stochastic solution of partial differential equations of fractional orders, Siber J numer math, 6, 197-203, (2003) · Zbl 1032.60057 [59] Uchaikin, V.V.; Zolotarev, V.M., Chance and stability stable distributions and their applications, (1999), VSP Utrecht · Zbl 0944.60006 [60] Weiss, G.H., Aspects and applications of random walks, (1994), North-Holland Amsterdam [61] West, B.J.; Bologna, M.; Grigolini, P., Physics of fractal operators, (2003), Springer Verlag New York [62] Wyss, M.M.; Wyss, W., Evolution, its fractional extension and generalization, Fract calcul appl anal, 4, 273-284, (2001) · Zbl 1042.45005 [63] Zaslavsky, G.M., Chaos, fractional kinetics and anomalous transport, Phys rep, 371, 461-580, (2002) · Zbl 0999.82053 [64] Zaslavsky, G.M., Hamiltonian chaos and fractional dynamics, (2005), Oxford University Press Oxford · Zbl 1080.37082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.