zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money. (English) Zbl 1142.90005
The authors extend the results of {\it S. Kar, A. K. Bhunia} and {\it M. Maiti} [Comput. Oper. Res. 28, 1315--1331 (2001; Zbl 1024.90005)] for a deteriorating item having two separate warehouses, own (OW) and rented (RW), with time dependent demand (which is increasing at decreasing rate) and interval valued lead-time over finite time horizon. Inflation rate and time value of money are taken into account. Deterioration rate depends on the warehouse. Shortages are partially blocked. The replenishment cycle lengths are of equal length and in each cycle the stocks of RW are transported to OW in a continuous release pattern. Using the interval arithmetic, the objective function for profit is changed to the corresponding multi-objective functions. These functions are maximized and solved by the multi-objective genetic algorithm developed for this purpose. The results are illustrated numerically.

MSC:
90B05Inventory, storage, reservoirs
91B28Finance etc. (MSC2000)
90C29Multi-objective programming; goal programming
90C59Approximation methods and heuristics
WorldCat.org
Full Text: DOI
References:
[1] Harris, F.: Operations and cost, factory management service, (1915)
[2] Hadley, G.; Whitin, T. M.: Analysis of inventory system, (1963) · Zbl 0133.42901
[3] Naddor, E.: Inventory systems, (1966) · Zbl 0315.90019
[4] Silver, E. A.; Paterson, R.: Decision system of inventory management production and planning, (1985)
[5] Silver, E. A.; Meel, H. C.: A heuristic for selecting lot size quantities for the case of a deterministic time varying demand rate and discrete opportunities for replenishment, Production and inventory management 14, 64-74 (1973)
[6] Doneldson, W. A.: Inventory replenishment policy for a linear trend in demand -- an analytic solution, Operational research quarterly 28, 663-670 (1977) · Zbl 0372.90052
[7] Wee, H. M.; Wang, W. T.: A variable production scheduling policy for deteriorating items with time varying demand, Computers and operations research 26, 237-244 (1999) · Zbl 0947.90052 · doi:10.1016/S0305-0548(98)00043-4
[8] Change, H. J.; Dye, C. Y.: An EOQ model for deteriorating items with time-varying demand and partial backlogging, Journal of the operational research society 50, 1176-1182 (1999) · Zbl 1054.90507
[9] Goyal, S. K.; Mortin, D.; Nebebe, F.: The finite time horizon trended inventory replenishment problem with shortages, Journal of the operational research society 43, 1173-1178 (1992) · Zbl 0762.90021
[10] Dey, J. K.; Kar, S.; Maiti, M.: An interactive method for inventory control with fuzzy lead-time and dynamic demand, European journal of operational research 167, No. 2, 381-397 (2005) · Zbl 1075.90003 · doi:10.1016/j.ejor.2003.07.025
[11] Hartely, R. V.: Operations research -- A managerial emphasis, (1976)
[12] Sarma, K. V. S.: A deterministic inventory model with two levels of storage and an optimum release rule, Opsearch 29, 175-180 (1983) · Zbl 0524.90030
[13] Murdeshwar, T. M.; Sathe, Y. S.: Some aspects of lot-size models with two levels of storage, Opsearch 22, 255-262 (1985) · Zbl 0577.90018
[14] Goswami, A.; Chaudhuri, K. S.: An economic order quantity model for items with two levels of storage for a linear trend in demand, Journal of the operational research society 43, 157-167 (1992) · Zbl 0764.90026
[15] Bhunia, A. K.; Maiti, M.: A two warehouses inventory model for a linear trend in demand, Opsearch 31, 318-329 (1994) · Zbl 0824.90053
[16] Bhunia, A. K.; Maiti, M.: A two warehouses inventory model for deteriorating items with a linear trend in demand and shortages, Journal of the operational research society 49, 287-292 (1998) · Zbl 1111.90308
[17] Kar, S.; Bhunia, A. K.; Maiti, M.: Deterministic inventory model with two level of storage, a linear trend in demand and a fixed time horizon, Computers and operations research 28, 1315-1331 (2001) · Zbl 1024.90005 · doi:10.1016/S0305-0548(00)00042-3
[18] Buzacott, J. A.: Economic order quantities with inflation, Operational research quarterly 26, No. 3, 553-558 (1975)
[19] Misra, R. B.: A note on optimal inventory management under inflation, Naval research logistics 26, No. 1D, 161-165 (1979) · Zbl 0396.90031 · doi:10.1002/nav.3800260116
[20] Ray, J.; Chaudhuri, K. S.: An EOQ model with stock-dependent demand, shortage, inflation and time discounting, International journal of production economics 53, 171-180 (1997)
[21] Sarkar, B. R.; Jamal, A. M. M.; Wang, S.: Supply chain models for perishable products under inflation and permissible delay in payment, Computers and operations research 27, 59-75 (2000) · Zbl 0935.90013 · doi:10.1016/S0305-0548(99)00008-8
[22] Das, C.: Effect of lead-time on inventory: A static analysis, Operation research 26, 273-282 (1975) · Zbl 0325.90018 · doi:10.1057/jors.1975.61
[23] Magson, D.: Stock control when the lead-time cannot be considers constant, Operational research society 30, 317-322 (1979) · Zbl 0394.90032 · doi:10.2307/3009632
[24] Foote, B.; Kebriaic, N.; Kumin, H.: Heuristic policies for inventory ordering problems with long and random varying lead times, Journal of operations & management 7, 115-124 (1988)
[25] Deb, K.; Agarwal, S.; Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation 6, No. 2 (2002)