zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
E&F Chaos: A user friendly software package for nonlinear economic dynamics. (English) Zbl 1142.91303
Summary: The use of nonlinear dynamic models in economics and finance has expanded rapidly in the last two decades. Numerical simulation is crucial in the investigation of nonlinear systems. E&F Chaos is an easy-to-use and freely available software package for simulation of nonlinear dynamic models to investigate stability of steady states and the presence of periodic orbits and chaos by standard numerical simulation techniques such as time series, phase plots, bifurcation diagrams, Lyapunov exponent plots, basin boundary plots and graphical analysis. The package contains many well-known nonlinear models, including applications in economics and finance, and is easy to use for non-specialists. New models and extensions or variations are easy to implement within the software package without the use of a compiler or other software. The software is demonstrated by investigating the dynamical behavior of some simple examples of the familiar cobweb model, including an extension with heterogeneous agents and asynchronous updating of strategies. Simulations with the E&F Chaos software quickly provide information about local and global dynamics and easily lead to challenging questions for further mathematical analysis.

91-08Computational methods (social and behavioral sciences)
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Arrowsmith D.K., Place C.M. (1995) An introduction to dynamical systems. Cambridge University Press, Cambridge · Zbl 0702.58002
[2] Boldrin M., Woodford M. (1990) Equilibrium models displaying endogenous fluctuations and chaos: A survey. Journal of Monetary Economics 25: 189--222 · doi:10.1016/0304-3932(90)90013-T
[3] Brock W.A., Hommes C.H. (1997) A rational route to randomness. Econometrica 65: 1059--1095 · Zbl 0898.90042 · doi:10.2307/2171879
[4] Brock W.A., Hsieh D.A., LeBaron B. (1991) Nonlinear dynamics, chaos and instability: Statistical theory and economic evidence. MIT Press, Cambridge
[5] Chiarella C. (1988) The cobweb model: Its instability and the onset of chaos. Economic Modeling 5: 377--384 · doi:10.1016/0264-9993(88)90010-7
[6] Day R.H. (1994) Complex economic dynamics. Volume I: An introduction to dynamical systems and market mechanisms. MIT Press, Cambridge · Zbl 0864.90019
[7] Devaney R.L. (1989) An introduction to chaotic dynamical systems (2nd ed). Addison Wesley Publication, Redwood City · Zbl 0695.58002
[8] Diks C.G.H., Weide R. (2005) Herding, a-synchronous updating and heterogeneity in memory in a CBS. Journal of Economic Dynamics and Control 29: 741--763 · Zbl 1202.91275 · doi:10.1016/j.jedc.2003.12.004
[9] Doedel, E. J., Paffenroth, R. C., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Oldeman, B. E., Sandstede, B., & Wang, X. J. (2001). AUTO2000: Continuation and bifurcation software for ordinary differential equations. Applied and Computational Mathematics. California Institute of Technology. http://indy.cs.concordia.ca/auto/ .
[10] Ezekiel M. (1938) The cobweb theorem. Quarterly Journal of Economics 52: 255--280 · doi:10.2307/1881734
[11] Grandmont J.-M. (1985) On endogenous competitive business cycles. Econometrica 53: 995--1046 · Zbl 0593.90009 · doi:10.2307/1911010
[12] Grandmont, J.-M. (1988). Nonlinear difference equations, bifurcations and chaos: An introduction. CEPREMAP Working Paper No 8811, June 1988.
[13] Guckenheimer J., Holmes P. (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Verlag, New York · Zbl 0515.34001
[14] Hommes, C. H. (1991). Chaotic dynamics in economic models. Some simple case-studies. Groningen Theses in Economics, Management & Organization, Wolters-Noordhoff, Groningen. · Zbl 0778.90006
[15] Hommes C.H. (1994) Dynamics of the cobweb model with adaptive expectations and nonlinear supply and demand. Journal of Economic Behavior & Organization 24: 315--335 · doi:10.1016/0167-2681(94)90039-6
[16] Hommes, C. H. (2006). Heterogeneous agent models in economics and finance, In L. Tesfatsion & K. L. Judd (eds.), Handbook of computational economics, volume 2: Agent-based computational economics (pp. 1109--1186). Amsterdam: North-Holland, Chap. 23.
[17] Hommes C.H., Huang H., Wang D. (2005) A robust rational route to randomness in a simple asset pricing model. Journal of Economic Dynamics and Control 29: 1043--1072 · Zbl 1202.91110 · doi:10.1016/j.jedc.2004.08.003
[18] Huberman B.A., Glance N.S. (1993) Evolutionary games and computer simulations. Proceedings of the National Academy of Sciences of the United States of America 90: 7716--7718 · Zbl 0800.92168 · doi:10.1073/pnas.90.16.7716
[19] Kuznetsov Y. (1995) Elements of applied bifurcation theory. Springer Verlag, New York · Zbl 0829.58029
[20] LeBaron, B. (2006), Agent-based computational finance. In L. Tesfatsion & K. L. Judd (eds.), Handbook of computational economics, volume 2: Agent-based computational economics (pp. 1187--1233). Amsterdam: North-Holland, Chap. 24.
[21] Li T.Y., Yorke J.A. (1975) Period three implies chaos. American Mathematical Monthly 82: 985--992 · Zbl 0351.92021 · doi:10.2307/2318254
[22] Medio A. (1992) Chaotic dynamics. Theory and applications to economics. Cambridge University Press, Cambridge · Zbl 0783.58002
[23] Medio A., Lines M. (2001) Nonlinear dynamics: A primer. Cambridge University Press, Cambridge · Zbl 1008.37001
[24] Mira C., Gardini L., Barugola A., Cathala J.-C. (1996) Chaotic dynamics in two-dimensional noninvertible maps. World Scientific, Singapore · Zbl 0906.58027
[25] Muth J.F. (1961) Rational expectations and the theory of price movements. Econometrica 29: 315--335 · doi:10.2307/1909635
[26] Nerlove M. (1958) Adaptive expectations and cobweb phenomena. Quarterly Journal of Economics 72: 227--240 · doi:10.2307/1880597
[27] Nowak M., May R.M. (1992) Evolutionary games and spatial chaos. Nature 359: 826--929 · doi:10.1038/359826a0
[28] Nowak M., Bonhoeffer S., May R.M. (1992) Spatial and the maintainance of cooperation. Proceedings of the National Academy of Sciences of the United States of America 91: 4877--4881 · Zbl 0799.92010 · doi:10.1073/pnas.91.11.4877
[29] Nusse, H. E., & Yorke, J. A. (1998). Dynamics: Numerical explorations (2nd ed.). Applied Mathematical Sciences (Vol. 101). Springer-Verlag. · Zbl 0895.58001
[30] Palis J., Takens F. (1993) Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge University Press, Cambridge · Zbl 0790.58014
[31] Racine J. (2006) gnuplot 4.0: A portable interactive plotting utility. Journal of Applied Econometrics 21: 133--141 · doi:10.1002/jae.885
[32] Rosser J.B. (2000) From catastrophe to chaos: A general theory of economic discontinuities. Kluwer, Boston · Zbl 1108.91339
[33] Wolf A., Swift J.B., Swinney L., Vastano J.A. (1985) Determining Lyapunov exponents from a time series. Physica D 16: 285--317 · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9