zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive control and synchronization of the Lorenz systems family. (English) Zbl 1142.93029
Summary: Impulsive control and synchronization for the newly presented Lorenz systems family are systematically investigated. Some new and more comprehensive criteria for global exponential stability and asymptotical stability of impulsively controlled Lorenz systems family are established with varying impulsive intervals. In particular, several simple and easily verified criteria are derived with equivalent impulsive intervals. An illustrative example is also provided to show the effectiveness and feasibility of the impulsive control method.

93D20Asymptotic stability of control systems
93C15Control systems governed by ODE
93C10Nonlinear control systems
34D20Stability of ODE
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501
[2] Pecora, L.; Carroll, T.: Synchronization in chaotic system. Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[3] Wu, X.; Lu, J.: Parameter identification and backstepping control of uncertain Lü system. Chaos, solitons & fractals 18, 721-729 (2003) · Zbl 1068.93019
[4] Chen, G.; Dong, X.: From chaos to order: perspectives, methodologies and applications. (1998) · Zbl 0908.93005
[5] Hu, G.; Xiao, J.; Zheng, Z.: Chaos control. (2000)
[6] Wu, X.; Lu, J.: Adaptive control of uncertain Lu system. Chaos, solitons & fractals 22, 375-381 (2004) · Zbl 1062.93516
[7] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic system. Chaos, solitons & fractals 14, 529-541 (2002) · Zbl 1067.37043
[8] Guan, Z.: Decentralized stabilization for impulsive large scale systems with delays. Dynam continuous discrete impuls syst 6, 369-379 (1999)
[9] Lu, J.; Wu, X.; Lii, J.: Synchronization of a unified system and the application in secure communication. Phys lett A 305, 365-370 (2002) · Zbl 1005.37012
[10] Lakshmikantham, V.; Bainov, D.; Simeonov, P.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[11] Yang, T.; Yang, L.; Yang, C.: Impulsive control of Lorenz system. Physica D 110, 18-24 (1997) · Zbl 0925.93414
[12] Yang, T.: Impulsive control. IEEE trans automat control 44, 1081-1084 (1999) · Zbl 0954.49022
[13] Li, Z.; Wen, C.; Soh, Y.: Analysis and design of impulsive control systems. IEEE trans automat control 46, 894-897 (2001) · Zbl 1001.93068
[14] Sun, J.; Zhang, Y.: Impulsive control of Rössler systems. Phys lett A 306, 306-312 (2003) · Zbl 1006.37049
[15] Chen, S.; Yang, Q.; Wang, C.: Impulsive control and synchronization of unified chaotic system. Chaos, solitons & fractals 20, 751-758 (2004) · Zbl 1050.93051
[16] Lorenz, E. N.: Deterministic non-periodic flows. J atmospheric sci 20, 130-141 (1963)
[17] Richter, H.: Controlling the Lorenz system: combining global and local schemes. Chaos, solitons & fractals 12, 2375-2380 (2001) · Zbl 1073.93537
[18] Stewart, I.: The Lorenz attractor exists. Nature 406, 948-949 (2000)
[19] Chen, G.; Ueta, T.: Yet another chaotic attractor. Int J bifurcat chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[20] Zhong, G.; Tang, K.: Circuitry implementation and synchronization of Chen’s attractor. Int J bifurcat chaos 10, 549-570 (2000)
[21] Lü, J.; Chen, G.; Zhang, S.: Dynamical analysis of a new chaotic attractor. Int J bifurcat chaos 12, 1001-1015 (2002) · Zbl 1044.37021
[22] Vaněček, A.; Čelikovsky\check{}, S.: Control systems: from linear analysis to synthesis of chaos. (1996)
[23] Lü, J.; Chen, G.; Cheng, D.; Čelikovsky\check{}, S.: Bridge the gap between the Lorenz system and the Chen system. Int J bifurcat chaos 12, 2917-2926 (2002) · Zbl 1043.37026
[24] Chen, G.; Lu, J.: Dynamics of the Lorenz systems family: analysis, control and synchronization. (2003)