zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A notion of stochastic input-to-state stability and its application to stability of cascaded stochastic nonlinear systems. (English) Zbl 1142.93034
Summary: In this paper, the property of practical input-to-state stability and its application to stability of cascaded nonlinear systems are investigated in the stochastic framework. Firstly, the notion of (practical) stochastic input-to-state stability with respect to a stochastic input is introduced, and then by the method of changing supply functions, (a) an (practical) SISS-Lyapunov function for the overall system is obtained from the corresponding Lyapunov functions for cascaded (practical) SISS subsystems.

93E15Stochastic stability
93C10Nonlinear control systems
93E03General theory of stochastic systems
93D25Input-output approaches to stability of control systems
Full Text: DOI
[1] Friedman A. Stochastic differential equations and applications, Volume 1. Academic Press, New York, 1975 · Zbl 0323.60056
[2] Has’minskii R.Z. Stochastic stability of differential equations. Kluwer Academic Publishers, Norwell, Massachusetts, 1980
[3] Imura, J.I., Sugie, T., Yoshikawa T. Global robust stabilization of nonlinear cascaded systems. IEEE Transactions on Automatic Control, 39: 1084--1089 (1994) · Zbl 0816.93072 · doi:10.1109/9.284899
[4] Isidori, A. Nonlinear Control Systems. Springer-Verlag, London, 1999 · Zbl 0931.93005
[5] Jiang, Z.P., Mareels, I.M.Y., Wang Y. A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica, 32: 1211--1215 (1996) · Zbl 0857.93089 · doi:10.1016/0005-1098(96)00051-9
[6] Jiang, Z.P., Praly, L. Design of robust adaptive controller for nonlinear systems with dynamic uncertainties. Automatica, 34: 825--840 (1998) · Zbl 0951.93042 · doi:10.1016/S0005-1098(98)00018-1
[7] Jiang, Z.P., Teel, A.R., Praly, L. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 7: 95--120 (1994) · Zbl 0836.93054 · doi:10.1007/BF01211469
[8] Khalil, H.K. Nonlinear systems, 3rd Edition. Prentice-Hall, Englewood Cliffs New Jersey, 2002 · Zbl 1003.34002
[9] Kokotoviíc, P.V., Arcak, M. Constructive nonlinear control: a historical perspective. Automatica, 37: 637--662 (2001) · Zbl 1153.93301
[10] Krstić, M., Deng, H. Stabilization of nonlinear uncertain systems. Springer-Verlag, London, 1998 · Zbl 0906.93001
[11] Krstić, M., Kanellakopoulos I., Kokotović P. V.: Nonlinear and Adaptive Control Design, Wiley, New York, 1995
[12] Liu, Y.G., Zhang, J.F. Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero-dynamics. SIAM J. Control and Optimization, 45:, 885--926 (2006) · Zbl 1117.93067 · doi:10.1137/S0363012903439185
[13] Øksendal, B. Stochastic differential equations: an introduction with applications. Springer-Verlag, Berlin Heidelberg, 1995 · Zbl 0841.60037
[14] Pan, Z., Bašar, T. Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. SIAM J. on Control and Optimization, 37: 957--995 (1999) · Zbl 0924.93046 · doi:10.1137/S0363012996307059
[15] Sontag, E.D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 34: 435--443 (1989) · Zbl 0682.93045 · doi:10.1109/9.28018
[16] Sontag, E.D. Mathematical control theory: deterministic finite dimensional systems. Springer-Verlag, New York, 1998 · Zbl 0945.93001
[17] Sontag, E.D., Teel, A. Changing supply function in input/state stable systems. IEEE Transactions on Automatic Control, 40:1476--1478 (1995) · Zbl 0832.93047 · doi:10.1109/9.402246
[18] Sontag, E.D., Wang, Y. On characterizations of the input-to-state stability property. Systems and Control Letters, 24: 351--359 (1995) · Zbl 0877.93121 · doi:10.1016/0167-6911(94)00050-6
[19] Sontag, E.D., Wang, Y. New characterizations of the input to state stablility property. IEEE Transactions on Automatic Control, 41: 1283--1294 (1996) · Zbl 0862.93051 · doi:10.1109/9.536498
[20] Tang, C., Bašar, T. Stochastic stability of singularly perturbed nonlinear systems, in Proceedings of 40th IEEE Conference on Decision and Control. Orlando, Florida, 399--404 (2001)
[21] Tsinias, J. Stochastic input-to-state stability and applications to global feedback stabilization. Int. J. Control, 71: 907--930 (1998) · Zbl 0953.93073 · doi:10.1080/002071798221632
[22] Tsinias, J. The concept of ”Exponential input to state stability” for stochastic systems and applications to feedback stabilization. Systems and Control Letters, 36: 221--229 (1999) · Zbl 0913.93067 · doi:10.1016/S0167-6911(98)00095-4
[23] Wu, Z.J., Xie, X.J., Zhang, S.Y. Adaptive backstepping controller design using stochastic small-gain theorem. Automatica, 43: 608--620 (2007) · Zbl 1114.93104 · doi:10.1016/j.automatica.2006.10.020