zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear feedback control of chaotic pendulum in presence of saturation effect. (English) Zbl 1142.93342
Summary: A feedback linearization control is applied to control a chaotic pendulum system. Tracking the desired periodic orbits such as period-one, period-two, and period-four orbits is efficiently achieved. Due to the presence of saturation in real world control signals, the stability of controller is investigated in presence of saturation and sufficient stability conditions are obtained. At first feedback linearization control law is designed, then to avoid the singularity condition, a saturating constraint is applied to the control signal. The stability conditions are obtained analytically. These conditions must be investigated for each specific case numerically. Simulation results show the effectiveness and robustness of proposed controller. A major advantage of this method is its shorter chaotic transient time in compare to other methods such as OGY and Pyragas controllers.

93B52Feedback control
93C85Automated control systems (robots, etc.)
37D45Strange attractors, chaotic dynamics
93C10Nonlinear control systems
93B51Design techniques in systems theory
Full Text: DOI
[1] Guckenheimer, J.; Homel, P.: Nonlinear oscillations, dynamical system, and bifurcation of vector fields. (1992)
[2] Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. (1990) · Zbl 0701.58001
[3] Ott, E.: Chaos in dynamical systems. (2002) · Zbl 1006.37001
[4] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501
[5] Shinbrot, T.; Ott, E.; Grebogi, N.; Yorke, J.: Using chaos to direct trajectories to targets. Phys rev lett 65, 3215-3218 (1990)
[6] Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys lett A 170, 421-428 (1992)
[7] Yagasaki, K.; Uozumi, T.: Controlling chaos using nonlinear approximations and delay coordinate embedding. Phys lett A 247, 129-139 (1998) · Zbl 0946.37023
[8] Yagasaki, K.; Uozumi, T.: Controlling chaos in a pendulum subjected to feedforward and feedback control. Int J bifur chaos 7, No. 12, 2827-2835 (1997) · Zbl 0925.93346
[9] Yagasaki, K.: Dynamics of a pendulum subjected to feedforward and feedback control. JSME int J 41, No. 3, 545-554 (1998)
[10] Kapitaniak, T.: Controlling chaotic oscillators without feedback. Chaos, solitons & fractals 2, No. 5, 519-530 (1992) · Zbl 0759.34034
[11] Ramesh, M.; Narayanan, S.: Chaos control by non-feedback methods in the presence of noise. Chaos, solitons & fractals 10, No. 9, 1473-1489 (1999) · Zbl 0983.37040
[12] Yassen, M. T.: Chaos control of Chen chaotic dynamical system. Chaos, solitons & fractals 15, 271-283 (2003) · Zbl 1038.37029
[13] Hwang, C. C.; Fung, R. F.; Hsieh, J. Y.; Li, W. J.: Nonlinear feedback control of the Lorenz equation. Int J eng sci 37, 1893-1900 (1999) · Zbl 1210.93033
[14] Fuh, C. C.; Tsai, H. H.: Control of discrete-time chaotic systems via feedback linearization. Chaos, solitons & fractals 13, 285-294 (2002) · Zbl 0978.93519
[15] Xinghuo, Y.: Variable structure control approach for controlling chaos. Chaos, solitons & fractals 8, No. 9, 1577-1586 (1997)
[16] Konishi, K.; Hirai, M.; Kokame, H.: Sliding mode control for a class of chaotic systems. Phys lett A 245, 511-517 (1998)
[17] Calvo, O.; Cartwright, J. H. E.: Fuzzy control of chaos. Int J bifur chaos 8, 1743-1747 (1998) · Zbl 0941.93526
[18] Guan, X.; Chen, C.: Adaptive fuzzy control for chaotic systems with H$\infty $tracking performance. Fuzzy sets syst 139, 81-93 (2003) · Zbl 1053.93022
[19] Ramesh, M.; Narayanan, S.: Chaos control of bonhoeffer-van der Pol oscillator using neural networks. Chaos, solitons & fractals 12, 2395-2405 (2001) · Zbl 1004.37067
[20] Alasty A, Salarieh H. Chaos control in Bonhoeffer-van der Pol system using fuzzy estimation. In: Proceedings of ESDA2004, 7th biennial conference on engineering systems design and analysis, Manchester, United Kingdom, July 19-22, 2004.
[21] Alasty, A.; Salarieh, H.: Controlling the chaos using fuzzy estimation of OGY and pyragas controllers. Chaos, solitons & fractals 26, 379-392 (2005) · Zbl 1153.93431
[22] Wang, R.; Jing, Z.: Chaos control of chaotic pendulum system. Chaos, solitons & fractals 21, 201-207 (2004) · Zbl 1045.37016
[23] Slotine, J. J.; Li, W.: Applied nonlinear control. (1991) · Zbl 0753.93036
[24] Khalil, H.: Nonlinear systems. (1996) · Zbl 0842.93033