×

Improved global robust stability criterion for delayed neural networks. (English) Zbl 1142.93400

Summary: A criterion for the uniqueness and global robust stability of the equilibrium point of interval Hopfield-type delayed neural networks is presented. The criterion is a marked improvement over a recent criterion due to Cao, Huang and Qu.

MSC:

93D09 Robust stability
34K20 Stability theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
93C15 Control/observation systems governed by ordinary differential equations

Software:

LMI toolbox
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O., Stability and dynamics of delay-type general and cellular neural networks, IEEE Trans Circuits Syst I, 39, 6, 487-490 (1993) · Zbl 0775.92010
[2] Civalleri, P. P.; Gilli, M.; Pandolfi, L., On stability of cellular neural networks with delay, IEEE Trans Circuits Syst I, 40, 3, 157-164 (1993) · Zbl 0792.68115
[3] Roska, T.; Wu, C. W.; Chua, L. O., Stability of cellular neural networks with dominant nonlinear and delay-type templates, IEEE Trans Circuits Syst I, 40, 4, 270-272 (1993) · Zbl 0800.92044
[4] Gopalsamy, K.; He, X. Z., Stability in asymmetric Hopfield networks with transmission delays, Physica D, 76, 4, 344-358 (1994) · Zbl 0815.92001
[5] Ye, H.; Michel, A. N.; Wang, K. N., Global stability and local stability of Hopfield neural networks with delays, Phys Rev E, 50, 5, 4206-4213 (1994)
[6] Forti, M.; Tesi, A., New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE Trans Circuits Syst I, 42, 7, 354-366 (1995) · Zbl 0849.68105
[7] Liao, X.; Yu, J., Robust stability for interval Hopfield neural networks with time delay, IEEE Trans Neural Networks, 9, 5, 1042-1046 (1998)
[8] Cao, J.; Zhou, D., Stability analysis of delayed cellular neural networks, Neural Networks, 11, 9, 1601-1605 (1998)
[9] Arik, S.; Tavsanoglu, V., On the global asymptotic stability of delayed cellular neural networks, IEEE Trans Circuits Syst I, 47, 4, 571-574 (2000) · Zbl 0997.90095
[10] Takahashi, N., A new sufficient condition for complete stability of cellular neural networks with delay, IEEE Trans Circuits Syst I, 47, 6, 793-799 (2000) · Zbl 0964.94008
[11] Liao, T. L.; Wang, F. C., Global stability for cellular neural networks with time delay, IEEE Trans Neural Networks, 11, 6, 1481-1484 (2000)
[12] Cao, J., A set of stability criteria for delayed cellular neural networks, IEEE Trans Circuits Syst I, 48, 4, 494-498 (2001) · Zbl 0994.82066
[13] Zhang, Q.; Ma, R.; Xu, J., Stability of cellular neural networks with delay, Electron Lett, 37, 9, 575-576 (2001)
[14] Yi, Z.; Heng, P.; Leung, K. S., Convergence analysis of cellular neural networks with unbounded delay, IEEE Trans Circuits Syst I, 48, 6, 680-687 (2001) · Zbl 0994.82068
[15] Chen, T., Global exponential stability of delayed Hopfield neural networks, Neural Networks, 14, 8, 977-980 (2001)
[16] Cao, J., Global stability conditions for delayed CNNs, IEEE Trans Circuits Syst I, 48, 11, 1330-1333 (2001) · Zbl 1006.34070
[17] Liao, X.; Wong, K.; Wu, Z.; Chen, G., Novel robust stability for interval-delayed Hopfield neural networks, IEEE Trans Circuits Syst I, 48, 11, 1355-1359 (2001) · Zbl 1006.34071
[18] Liao, X.; Chen, G.; Sanchez, E. N., LMI-based approach for asymptotically stability analysis of delayed neural networks, IEEE Trans Circuits Syst I, 49, 7, 1033-1039 (2002) · Zbl 1368.93598
[19] Arik, S., An improved global stability result for delayed cellular neural networks, IEEE Trans Circuits Syst I, 49, 8, 1211-1214 (2002) · Zbl 1368.34083
[20] Liao, X.; Chen, G.; Sanchez, E. N., Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach, Neural Networks, 15, 7, 855-866 (2002)
[21] Arik, S., An analysis of global asymptotic stability of delayed cellular neural networks, IEEE Trans Neural Networks, 13, 5, 1239-1242 (2002)
[22] Cao, J.; Wang, J., Global asymptotic stability of recurrent neural networks with Lipschitz-continuous activation functions and time-varying delays, IEEE Trans Circuits Syst I, 50, 1, 33-44 (2003)
[23] Arik, S., Global robust stability of delayed neural networks, IEEE Trans Circuits Syst I, 50, 1, 156-160 (2003) · Zbl 1368.93490
[24] Zhang, Q.; Ma, R.; Wang, C.; Xu, J., On the global stability of delayed neural networks, IEEE Trans Automat Contr, 48, 5, 399-405 (2003)
[25] Arik, S., Global asymptotic stability of a larger class of neural networks with constant time delays, Phys Lett A, 311, 6, 504-511 (2003) · Zbl 1098.92501
[26] Lu, W.; Rong, L.; Chen, T., Global convergence of delayed neural network systems, Int J Neural Systems, 13, 3, 193-204 (2003)
[27] Zhang, Q.; Wei, X. P.; Xu, J., Global asymptotic stability of Hopfield neural networks with transmission delays, Phys Lett A, 318, 4-5, 399-405 (2003) · Zbl 1030.92003
[28] Qiao, H.; Peng, J.; Xu, Z.-B.; Zhang, B., A reference model approach to stability analysis of neural networks, IEEE Trans Syst Man Cybern B, 33, 6, 925-936 (2003)
[29] Singh, V., A generalized LMI-based approach to the global asymptotic stability of delayed cellular neural networks, IEEE Trans Neural Networks, 15, 1, 223-225 (2004)
[30] Singh, V., Robust stability of cellular neural networks with delay: linear matrix inequality approach, IEE Proc—Contr Theory Appl, 151, 1, 125-129 (2004)
[31] Singh, V., Global asymptotic stability of cellular neural networks with unequal delays: LMI approach, Electron Lett, 40, 9, 548-549 (2004)
[32] Cao, J.; Chen, T., Globally exponentially robust stability and periodicity of delayed neural networks, Chaos, Solitons & Fractals, 22, 4, 957-963 (2004) · Zbl 1061.94552
[33] Cao, J.; Huang, D.-S.; Qu, Y., Global robust stability of delayed recurrent neural networks, Chaos, Solitons & Fractals, 23, 1, 221-229 (2005) · Zbl 1075.68070
[34] Singh, V., Global robust stability of delayed neural networks: an LMI approach, IEEE Trans Circuits Syst II, 52, 1, 33-36 (2005)
[35] Singh, V., A novel global robust stability criterion for neural networks with delay, Phys Lett A, 337, 4-6, 369-373 (2005) · Zbl 1136.34346
[36] Cao, J.; Ho, D. W.C., A general framework for global asymptotic stability of delayed neural networks based on LMI approach, Chaos, Solitons & Fractals, 24, 5, 1317-1329 (2005) · Zbl 1072.92004
[37] He, Y.; Wang, Q. G.; Zheng, W. X., Global robust stability for delayed neural networks with polytopic type uncertainties, Chaos, Solitons & Fractals, 26, 5, 1349-1354 (2005) · Zbl 1083.34535
[38] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (1994), SIAM: SIAM Philadelphia (PA) · Zbl 0816.93004
[39] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M., LMI control toolbox—for use with Matlab (1995), The MATH Works Inc.: The MATH Works Inc. Natick (MA)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.