zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved global robust stability criterion for delayed neural networks. (English) Zbl 1142.93400
Summary: A criterion for the uniqueness and global robust stability of the equilibrium point of interval Hopfield-type delayed neural networks is presented. The criterion is a marked improvement over a recent criterion due to Cao, Huang and Qu.

MSC:
93D09Robust stability of control systems
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
93C15Control systems governed by ODE
Software:
LMI toolbox
WorldCat.org
Full Text: DOI
References:
[1] Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O.: Stability and dynamics of delay-type general and cellular neural networks. IEEE trans circuits syst I 39, No. 6, 487-490 (1993) · Zbl 0775.92010
[2] Civalleri, P. P.; Gilli, M.; Pandolfi, L.: On stability of cellular neural networks with delay. IEEE trans circuits syst I 40, No. 3, 157-164 (1993) · Zbl 0792.68115
[3] Roska, T.; Wu, C. W.; Chua, L. O.: Stability of cellular neural networks with dominant nonlinear and delay-type templates. IEEE trans circuits syst I 40, No. 4, 270-272 (1993) · Zbl 0800.92044
[4] Gopalsamy, K.; He, X. Z.: Stability in asymmetric Hopfield networks with transmission delays. Physica D 76, No. 4, 344-358 (1994) · Zbl 0815.92001
[5] Ye, H.; Michel, A. N.; Wang, K. N.: Global stability and local stability of Hopfield neural networks with delays. Phys rev E 50, No. 5, 4206-4213 (1994)
[6] Forti, M.; Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE trans circuits syst I 42, No. 7, 354-366 (1995) · Zbl 0849.68105
[7] Liao, X.; Yu, J.: Robust stability for interval Hopfield neural networks with time delay. IEEE trans neural networks 9, No. 5, 1042-1046 (1998)
[8] Cao, J.; Zhou, D.: Stability analysis of delayed cellular neural networks. Neural networks 11, No. 9, 1601-1605 (1998)
[9] Arik, S.; Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks. IEEE trans circuits syst I 47, No. 4, 571-574 (2000) · Zbl 0997.90095
[10] Takahashi, N.: A new sufficient condition for complete stability of cellular neural networks with delay. IEEE trans circuits syst I 47, No. 6, 793-799 (2000) · Zbl 0964.94008
[11] Liao, T. L.; Wang, F. C.: Global stability for cellular neural networks with time delay. IEEE trans neural networks 11, No. 6, 1481-1484 (2000)
[12] Cao, J.: A set of stability criteria for delayed cellular neural networks. IEEE trans circuits syst I 48, No. 4, 494-498 (2001) · Zbl 0994.82066
[13] Zhang, Q.; Ma, R.; Xu, J.: Stability of cellular neural networks with delay. Electron lett 37, No. 9, 575-576 (2001)
[14] Yi, Z.; Heng, P.; Leung, K. S.: Convergence analysis of cellular neural networks with unbounded delay. IEEE trans circuits syst I 48, No. 6, 680-687 (2001) · Zbl 0994.82068
[15] Chen, T.: Global exponential stability of delayed Hopfield neural networks. Neural networks 14, No. 8, 977-980 (2001)
[16] Cao, J.: Global stability conditions for delayed cnns. IEEE trans circuits syst I 48, No. 11, 1330-1333 (2001) · Zbl 1006.34070
[17] Liao, X.; Wong, K.; Wu, Z.; Chen, G.: Novel robust stability for interval-delayed Hopfield neural networks. IEEE trans circuits syst I 48, No. 11, 1355-1359 (2001) · Zbl 1006.34071
[18] Liao, X.; Chen, G.; Sanchez, E. N.: LMI-based approach for asymptotically stability analysis of delayed neural networks. IEEE trans circuits syst I 49, No. 7, 1033-1039 (2002)
[19] Arik, S.: An improved global stability result for delayed cellular neural networks. IEEE trans circuits syst I 49, No. 8, 1211-1214 (2002)
[20] Liao, X.; Chen, G.; Sanchez, E. N.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural networks 15, No. 7, 855-866 (2002)
[21] Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks. IEEE trans neural networks 13, No. 5, 1239-1242 (2002)
[22] Cao, J.; Wang, J.: Global asymptotic stability of recurrent neural networks with Lipschitz-continuous activation functions and time-varying delays. IEEE trans circuits syst I 50, No. 1, 33-44 (2003)
[23] Arik, S.: Global robust stability of delayed neural networks. IEEE trans circuits syst I 50, No. 1, 156-160 (2003)
[24] Zhang, Q.; Ma, R.; Wang, C.; Xu, J.: On the global stability of delayed neural networks. IEEE trans automat contr 48, No. 5, 399-405 (2003)
[25] Arik, S.: Global asymptotic stability of a larger class of neural networks with constant time delays. Phys lett A 311, No. 6, 504-511 (2003) · Zbl 1098.92501
[26] Lu, W.; Rong, L.; Chen, T.: Global convergence of delayed neural network systems. Int J neural systems 13, No. 3, 193-204 (2003)
[27] Zhang, Q.; Wei, X. P.; Xu, J.: Global asymptotic stability of Hopfield neural networks with transmission delays. Phys lett A 318, No. 4-5, 399-405 (2003) · Zbl 1030.92003
[28] Qiao, H.; Peng, J.; Xu, Z. -B.; Zhang, B.: A reference model approach to stability analysis of neural networks. IEEE trans syst man cybern B 33, No. 6, 925-936 (2003)
[29] Singh, V.: A generalized LMI-based approach to the global asymptotic stability of delayed cellular neural networks. IEEE trans neural networks 15, No. 1, 223-225 (2004)
[30] Singh, V.: Robust stability of cellular neural networks with delay: linear matrix inequality approach. IEE proc--contr theory appl 151, No. 1, 125-129 (2004)
[31] Singh, V.: Global asymptotic stability of cellular neural networks with unequal delays: LMI approach. Electron lett 40, No. 9, 548-549 (2004)
[32] Cao, J.; Chen, T.: Globally exponentially robust stability and periodicity of delayed neural networks. Chaos, solitons & fractals 22, No. 4, 957-963 (2004) · Zbl 1061.94552
[33] Cao, J.; Huang, D. -S.; Qu, Y.: Global robust stability of delayed recurrent neural networks. Chaos, solitons & fractals 23, No. 1, 221-229 (2005) · Zbl 1075.68070
[34] Singh, V.: Global robust stability of delayed neural networks: an LMI approach. IEEE trans circuits syst II 52, No. 1, 33-36 (2005)
[35] Singh, V.: A novel global robust stability criterion for neural networks with delay. Phys lett A 337, No. 4-6, 369-373 (2005) · Zbl 1136.34346
[36] Cao, J.; Ho, D. W. C.: A general framework for global asymptotic stability of delayed neural networks based on LMI approach. Chaos, solitons & fractals 24, No. 5, 1317-1329 (2005) · Zbl 1072.92004
[37] He, Y.; Wang, Q. G.; Zheng, W. X.: Global robust stability for delayed neural networks with polytopic type uncertainties. Chaos, solitons & fractals 26, No. 5, 1349-1354 (2005) · Zbl 1083.34535
[38] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004
[39] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M.: LMI control toolbox--for use with Matlab. (1995)