×

A non-correlator-based digital communication system using interleaved chaotic differential peaks keying (I-CDPK) modulation and chaotic synchronization. (English) Zbl 1142.94320

Summary: This paper presents a novel non-correlator-based digital communication system with the application of interleaved chaotic differential peaks keying (I-CDPK) modulation technique. The proposed communication system consists of four major modules: I-CDPK modulator (ICM), frequency modulation (FM) transmitter, FM receiver and I-CDPK demodulator (ICDM). In the ICM module, there are four components: a chaotic circuit to generate the chaotic signals, A/D converter, D/A converter and a digital processing mechanism to control all signal flows and performs I-CDPK modulation corresponding to the input digital bits. For interleaving every input digital bit set, every state of the chaotic system is used to represent one portion of it, but only a scalar state variable (i.e. the system output) is sent to the ICDM’s chaotic circuit through both FM transmitter and FM receiver. An observer-based chaotic synchronization scheme is designed to synchronize the chaotic circuits of the ICM and ICDM. Meanwhile, the bit detector in ICDM is devoted to recover the transmitted input digital bits. Some numerical simulations of an illustrative communication system are given to demonstrate its theoretical effectiveness. Furthermore, the performance of bit error rate of the proposed system is analyzed and compared with those of the correlator-based communication systems adopting coherent binary phase shift keying (BPSK) and coherent differential chaotic shift keying (DCSK) schemes.

MSC:

94A14 Modulation and demodulation in information and communication theory
94A05 Communication theory
37N99 Applications of dynamical systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Morgul, O.; Solak, E., On the synchronization of chaotic systems by using state observations, Int J bifurc chaos, 7, 1307-1322, (1997) · Zbl 0967.93509
[2] Grassi, G.; Mascolo, S., Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE trans circuits syst I, 44, 1013-1014, (1997)
[3] Liao, T.L., Observer based approach for controlling chaotic systems, Phys rev E, 57, 1604-1610, (1998)
[4] Chien, T.I.; Liao, T.L., Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization, Chaos, solitons & fractals, 24, 241-255, (2005) · Zbl 1068.94003
[5] Marino IP, Lopez L, Miguez J, Sanjuan MAF. A novel channel coding scheme based on continuous-time chaotic dynamics. In: 14th international conference on digital signal processing, vol. 2, 2002. p. 1321-4.
[6] Chen, B.; Wornell, G.W., Efficient channel coding for analog sources using chaotic systems, Global telecommun conf, 1, 18-22, (1996)
[7] Frey, D.R., Chaotic digital encoding: an approach to secure communication, IEEE trans circuits syst II: analog digital signal process, 40, 660-666, (1993)
[8] Barbulescu, S.A.; Guidi, A.; Pietrobon, S.S., Chaotic turbo codes, IEEE int symp inform theory, 131-135, (2000)
[9] Chambers, W.G.; Frey, D., Comments on “chaotic digital encoding: an approach to secure communication and reply”, IEEE trans circuits syst II: analog digital signal process, 46, 1445-1448, (1999) · Zbl 0990.94510
[10] Frey, D.R., On chaotic digital encoding and generalized inverses, IEEE int symp circuits syst, 893-896, (1995)
[11] Aislam, T.; Edwards, J.A., Secure communications using chaotic digital encoding, Electron lett, 32, 190-191, (1996)
[12] Dedieu, H.; Kennedy, M.P.; Hasler, M., Chaos shift keying: modulation and demodulation of a chaotic carrier using self synchronizing chuas circuits, IEEE trans circuits syst II: analog digital signal process, 40, 634-642, (1993)
[13] Kolumb’an G, Vizv’ari B, Schwarz W, Abel A. Differential chaos shift keying: a robust coding for chaotic communication. In: Proceedings of the 4th international workshop on nonlinear dynamics of electronic systems, Sevilla, Spain, 1996. pp. 87-92.
[14] Kolumbau, G., Theoretical noise performance of correlator-based chaotic communications schemes, IEEE trans circuits syst I: fundamental theory applicat, 47, 1692-1701, (2000) · Zbl 0984.94003
[15] Kolumban, G.; Kennedy, M.P.; Chua, L.O., The role of synchronization in digital communications using chaos, IEEE trans circuits syst I: fundamental theory applicat, 44, 927-936, (1997)
[16] Kolumban, G.; Kennedy, M.P.; Chua, L.O., The role of synchronization in digital communications using chaos, IEEE trans circuits syst I: fundamental theory applicat, 45, 1129-1140, (1998) · Zbl 0991.93097
[17] Kolumban, G.; Kennedy, M.P.; Chua, L.O., Communications using chaos>MINUS. III. performance bounds for correlation receivers, IEEE trans circuits syst I: fundamental theory applicat, 47, 1673-1683, (2000) · Zbl 0990.94002
[18] Kennedy, M.P.; Kolumba’n, G., Digital communications using chaos, Signal process, 80, 1307-1320, (2000) · Zbl 1035.94500
[19] Schimming T, Hasler M. Coded modulations based on controlled 1-D and 2-D piecewise linear chaotic maps. In: Proceedings of the 2003 International Symposium ISCAS_03, 2003. p. III-762-5.
[20] Rulkov, N.F.; Sushchik, M.M.; Tsimring, L.S.; Volkovskii, A.R., Digital communication using chaotic-pulse-position modulatin, IEEE trans circuits syst I: fundamental theory applicat, 48, 1436-1444, (2001)
[21] Yang, T.; Chua, L.O., Chaotic digital code division multiple access (CDMA) communications, Int J bifurc chaos, 7, 2789-2805, (1997) · Zbl 1126.94304
[22] Kraus, J.; Nossek, J.A.; Yang, T.; Chua, L.O., Evaluation of a continuous valued chaotic spreader used in a chaotic digital code-division multiple access ((CD)2MA) system, Int J bifurc chaos, 10, 1933-1950, (2000)
[23] Yang, T.; Chua, L.O., Applications of chaotic digital code-division multiple access (CDMA) to cable communication systems, Int J bifurc chaos, 8, 1657-1669, (1998)
[24] Barda, A.; Laufer, S., Chaotic signals for multiple access communications, Electrical electron eng Israel, 2.1.3/1-2.1.3/5, (1995)
[25] Lau, F.C.M.; Yip, M.M.; Tse, C.K.; Hau, S.F., A multiple-access technique for differential chaos-shift keying, IEEE trans circuits syst I: fundamental theory applicat, 49, 96-104, (2002)
[26] Sandoval-Morantes, D.; Munoz-Rodriguez, D., Chaotic sequences for multiple access, Electron lett, 34, 235-237, (1998)
[27] Schweizer, J.; Hasler, M., Multiple access communications using chaotic signals, IEEE int symp circuits syst, 108-111, (1996)
[28] Glover, I.A.; Grant, P.M., Digital communication, (2004), Prentice-Hall
[29] Carroll, T.L.; Pecora, L.M., Synchronizing chaotic circuits, IEEE trans circuits syst I, 38, 453-456, (1991)
[30] Sprott, J.C., Some simple chaotic flows, Phys rev E, 50, R647-R650, (1994)
[31] Simon, M.K.; Hinedi, S.H.; Lindsey, W.C., Digital communication techniques: signal design and detection, (1995), PTR Prentice-Hall Englewood Cliffs, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.