×

Twisted Edwards curves. (English) Zbl 1142.94332

Vaudenay, Serge (ed.), Progress in cryptology – AFRICACRYPT 2008. First international conference on cryptology in Africa, Casablanca, Morocco, June 11–14, 2008. Proceedings. Berlin: Springer (ISBN 978-3-540-68159-5/pbk). Lecture Notes in Computer Science 5023, 389-405 (2008).
Summary: This paper introduces “twisted Edwards curves,” a generalization of the recently introduced Edwards curves [H. M. Edwards, “A normal form for elliptic curves”, Bull. Am. Math. Soc., New Ser. 44, No. 3, 393–422 (2007; Zbl 1134.14308)], shows that twisted Edwards curves include more curves over finite fields, and in particular every elliptic curve in Montgomery form, shows how to cover even more curves via isogenies, presents fast explicit formulas for twisted Edwards curves in projective and inverted coordinates, and shows that twisted Edwards curves save time for many curves that were already expressible as Edwards curves.
For the entire collection see [Zbl 1137.94002].

MSC:

11G20 Curves over finite and local fields
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
14G50 Applications to coding theory and cryptography of arithmetic geometry
14H52 Elliptic curves
11G05 Elliptic curves over global fields
94A60 Cryptography

Citations:

Zbl 1134.14308

Software:

SageMath
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bernstein, D. J.; Yung, M.; Dodis, Y.; Kiayias, A.; Malkin, T.., Curve25519: New Diffie-Hellman Speed Records, Public Key Cryptography - PKC 2006, 207-228 (2006), Heidelberg: Springer, Heidelberg · Zbl 1151.94480 · doi:10.1007/11745853_14
[2] Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves (2007) (Citations in this document: §1), http://eprint.iacr.org/2008/016
[3] Bernstein, D.J., Lange, T.: Explicit-formulas database (2007) (Citations in this document: §5, §6), http://hyperelliptic.org/EFD
[4] Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Asiacrypt 2007 [19], pp. 29-50 (2007) (Citations in this document: §1, §1, §2, §2, §2, §3, §3, §3, §3, §3, §3, §4, §6, §6, §6, §7, §7), http://cr.yp.to/papers.html#newelliptic · Zbl 1153.11342
[5] Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: AAECC 2007 [8], pp. 20-27 (2007) (Citations in this document: §1, §6, §7), http://cr.yp.to/papers.html#inverted
[6] Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: AAECC 2003 [14], pp. 34-42 (2003) MR 2005c:94045 (Citations in this document: §5), http://eprint.iacr.org/2002/125 · Zbl 1031.94510
[7] Blake, I. F.; Seroussi, G.; Smart, N. P., Elliptic curves in cryptography (2000), Cambridge: Cambridge University Press, Cambridge
[8] Boztaş, S.; Lu, H.-F. (F.), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (2007), Heidelberg: Springer, Heidelberg
[9] Brier, É., Joye, M.: Fast point multiplication on elliptic curves through isogenies. In: AAECC 2003 [14], pp. 43-50 (2003) (Citations in this document: §5) · Zbl 1030.11027
[10] Cohen, H.; Frey, G., Handbook of elliptic and hyperelliptic curve cryptography (2005), Boca Raton: CRC Press, Boca Raton
[11] Doche, C., Lange, T.: Arithmetic of elliptic curves. In: [10] (2005), pp. 267- 302. MR 2162729 (Citations in this document: §3)
[12] Duquesne, S., Improving the arithmetic of elliptic curves in the Jacobi model, Information Processing Letters, 104, 101-105 (2007) · Zbl 1183.94031 · doi:10.1016/j.ipl.2007.05.012
[13] Edwards, H. M., A normal form for elliptic curves, Bulletin of the American Mathematical Society, 44, 393-422 (2007) · Zbl 1134.14308 · doi:10.1090/S0273-0979-07-01153-6
[14] Fossorier, M. P.C.; Høholdt, T.; Poli, A., Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (2003), Heidelberg: Springer, Heidelberg · Zbl 1019.00017
[15] Galbraith, S. D.; McKee, J., The probability that the number of points on an elliptic curve over a finite field is prime, Journal of the London Mathematical Society, 62, 671-684 (2000) · Zbl 1010.11033 · doi:10.1112/S0024610700001502
[16] Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve arithmetic. In: INDOCRYPT 2007 [23] (2007) (Citations in this document: §5) · Zbl 1153.94390
[17] Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster group operations on elliptic curves. 25 Feb 2008 version (2008) (Citations in this document: §5), http://eprint.iacr.org/2007/441 · Zbl 1206.94074
[18] Imai, H.; Zheng, Y., Public Key Cryptography (2000), Heidelberg: Springer, Heidelberg · Zbl 0931.00050
[19] Kurosawa, K., Advances in Cryptology - ASIACRYPT 2007 (2007), Heidelberg: Springer, Heidelberg · Zbl 1135.94001
[20] Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243-264 (1987), (Citations in this document: §3, §7), http://links.jstor.org/sici?sici=0025-571819870148:177243:STPAEC2.0.CO;2-3 · Zbl 0608.10005
[21] Okeya, K., Kurumatani, H., Sakurai, K.: Elliptic curves with the Montgomery-form and their cryptographic applications. In: PKC 2000, pp. 238-257 (2000) (Citations in this document: §3 §3) · Zbl 0969.94021
[22] Silverman, J.H.: The arithmetic of elliptic curves. Graduate Texts in Mathematics 106 (1986) · Zbl 0585.14026
[23] Srinathan, K.; Rangan, C. P.; Yung, M., Progress in Cryptology - INDOCRYPT 2007 (2007), Heidelberg: Springer, Heidelberg · Zbl 1135.94002
[24] Stein, W. (ed.): Sage Mathematics Software (Version 2.8.12), The Sage Group (2008) (Citations in this document: §3), http://www.sagemath.org
[25] Yung, M.; Dodis, Y.; Kiayias, A.; Malkin, T., Public Key Cryptography - PKC 2006 (2006), Heidelberg: Springer, Heidelberg · Zbl 1102.94003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.