Schlickewei, Hans Peter (ed.); Schmidt, Klaus (ed.); Tichy, Robert F. (ed.) Diophantine approximation. Festschrift for Wolfgang Schmidt. Based on lectures given at a conference at the Erwin Schrödinger Institute, Vienna, Austria, 2003. (English) Zbl 1143.11004 Developments in Mathematics 16. Wien: Springer (ISBN 978-3-211-74279-2/hbk). vii, 422 p. (2008). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Schlickewei, Hans Peter, The mathematical work of Wolfgang Schmidt, 1-20 [Zbl 1207.11002]Baker, Roger C., Schäffer’s determinant argument, 21-39 [Zbl 1234.11087]Beck, József, Arithmetic progressions and Tic-Tac-Toe games, 41-93 [Zbl 1243.91018]Berkes, István; Philipp, Walter; Tichy, Robert F., Metric discrepancy results for sequences \(\{n_k x\}\) and Diophantine equations, 95-105 [Zbl 1213.11152]Bugeaud, Yann, Mahler’s classification of numbers compared with Koksma’s. II, 107-121 [Zbl 1214.11082]Bundschuh, Peter; Zudilin, Wadim, Rational approximations to a \(q\)-analogue of \(\pi\) and some other \(q\)-series, 123-139 [Zbl 1213.11146]Chen, William W. L.; Skriganov, Maxim M., Orthogonality and digit shifts in the classical mean squares problem in irregularities of point distribution, 141-159 [Zbl 1233.11082]Corvaja, Pietro; Zannier, Umberto, Applications of the subspace theorem to certain Diophantine problems. A survey of some recent results, 161-174 [Zbl 1245.11086]Evertse, Jan-Hendrik; Ferretti, Roberto G., A generalization of the subspace theorem with polynomial of higher degree, 175-198 [Zbl 1153.11032]Fuchs, Clemens; Pethő, Attila; Tichy, Robert F., On the Diophantine equation \(G_n(x)=G_m(y)\) with \(Q(x,y)=0\), 199-209 [Zbl 1215.11031]Hajdu, Lajos; Tijdeman, Robert, A criterion for polynomials to divide infinitely many \(k\)-nomials, 211-220 [Zbl 1220.11038]Krattenthaler, Christian; Rivoal, Tanguy, Padé approximants of \(q\)-polylogarithm, 221-230 [Zbl 1227.11085]Losert, Viktor, The set of solutions of some equation for linear recurrence sequences, 231-235 [Zbl 1235.11032]Masser, David; Vaaler, Jeffrey D., Counting algebraic numbers with large height. I, 237-243 [Zbl 1211.11115]Mihăilescu, Preda, Class number conditions for the diagonal case of the equation of Nagell and Ljunggren, 245-273 [Zbl 1239.11036]Nesterenko, Yuri V., Construction of approximations to zeta-values, 275-293 [Zbl 1254.11071]Philippon, Patrice; Sombra, Martín, Some diophantine aspects of projective toric varieties, 295-338 [Zbl 1153.11029]Rémond, Gaël, An arithmetic Łojasiewicz inequality, 339-345 [Zbl 1151.11014]Roy, Damien, On the continued fraction expansion of a class of numbers, 347-361 [Zbl 1215.11070]Schinzel, Andrzej, The number of solutions of a linear homogeneous congruence, 363-370 [Zbl 1239.11039]Schweiger, Fritz, A note on Lyapunov theory for Brun algorithm, 371-379 [Zbl 1197.11097]Stepanov, Serguei A., Orbit sums and modular vector invariants, 381-412 [Zbl 1221.13009]Viola, Carlo, New irrationality results for dilogarithms of rational numbers, 413-422 [Zbl 1214.11085] MSC: 11-06 Proceedings, conferences, collections, etc. pertaining to number theory 00B30 Festschriften 00B25 Proceedings of conferences of miscellaneous specific interest 11Jxx Diophantine approximation, transcendental number theory 11Kxx Probabilistic theory: distribution modulo \(1\); metric theory of algorithms 11Dxx Diophantine equations Biographic References: Schmidt, Wolfgang PDF BibTeX XML Cite \textit{H. P. Schlickewei} (ed.) et al., Diophantine approximation. Festschrift for Wolfgang Schmidt. Based on lectures given at a conference at the Erwin Schrödinger Institute, Vienna, Austria, 2003. Wien: Springer (2008; Zbl 1143.11004) Full Text: DOI OpenURL