Bol-loops of order \(3\cdot 2^n\). (English) Zbl 1143.20046

Summary: We construct proper Bol-loops of order \(3\cdot 2^n\) using a generalisation of the semidirect product of groups defined by G. F. Birkenmeier and S. Xiao [Commun. Algebra 23, No. 1, 81-95 (1995; Zbl 0821.20059)]. Moreover we classify the obtained loops up to isomorphism.


20N05 Loops, quasigroups


Zbl 0821.20059
Full Text: EuDML


[1] Kiguradze I. T.: On Some Singular Boundary Value Problems for Ordinary Differential Equations. : Tbilisi Univ. Press, Tbilisi. 1975 · Zbl 0521.34019
[2] Kiguradze I. T., Shekhter B. L.: Singular boundary value problems for second order ordinary differential equations. Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. Nov. Dost. 30 (1987), 105-201 (in Russian), · Zbl 0631.34021
[3] O’Regan D.: Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap. Nonlinear Anal. 47 (2001), 1163-1174. · Zbl 1042.34523
[4] O’Regan D.: Theory of Singular Boundary Value Problems. : World Scientific, Singapore. 1994.
[5] Rachůnková I.: Singular mixed boundary value problem. J. Math. Anal. Appl. 320 (2006), 611-618. · Zbl 1103.34009
[6] Rachůnková I., Staněk S., Tvrdý M.: Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations. Handbook of Differential Equations. Ordinary Differential Equations by A. Cañada, P. Drábek, A. Fonda, Vol. 3., pp. 607-723, Elsevier, 2006.
[7] Wang M., Cabada A., Nieto J. J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions. Ann. Polon. Math. 58, 3 (1993), 221-235. · Zbl 0789.34027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.