×

zbMATH — the first resource for mathematics

Proper holomorphic maps from domains in \(\mathbb C^{2}\) with transverse circle action. (English) Zbl 1143.32011
Let \(T=S^1\) denote the torus and let \(\Omega\) be a bounded connected open subset of \(\mathbb C^2\), which is pseudoconvex, of finite type and with smooth three dimensional boundary.
In this paper the authors consider proper holomorphic mappings between pseudoconvex regions of \(\mathbb C^2\) and they study transverse actions in relation with the branch locus. Recall that classes of domains admitting a \(T\)-action are for instance Hartogs domains, Reinhardt and quasi-circular domains.

MSC:
32H35 Proper holomorphic mappings, finiteness theorems
32T25 Finite-type domains
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barrett, D., Regularity of the Bergman projection on domains with transverse symmetries, Math. Ann., 258(4), 1981/82, 441–446. MR0650948 (83i:32032) · Zbl 0486.32015
[2] Coupet, B., Pan, Y. and Sukhov, A., On proper holomorphic mappings from domains with T-action, Nagoya Math. J., 154, 1999, 57–72. MR1689172 (2000b:32036) · Zbl 0937.32011
[3] Pan, Y., Proper holomorphic self-mappings of Reinhardt domains, Math. Z., 208(2), 1991, 289–295. MR1128711 (93f:32029) · Zbl 0727.32011
[4] Coupet B., Pan, Y., and Sukhov, A., Proper holomorphic self-maps of quasi-circular domains in \(\mathbb{C}\)2, Nagoya Math. J., 164, 2001, 1–16. MR1869091 (2002j:32014) · Zbl 1031.32018
[5] D’Angelo, J., Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, 1993. MR1224231 (94i:32022)
[6] Bedford, E., Action of the automorphisms of a smooth domain in \(\mathbb{C}\) n , Proc. Amer. Math. Soc., 93(2), 1985, 232–234. MR0770527 (86e:32029) · Zbl 0566.32024
[7] Bell, S., Boundary behavior of proper holomorphic mappings between non-pseudoconvex domains, Amer. J. Math., 106(3), 1984, 639–643. MR0745144 (86a:32054) · Zbl 0552.32019
[8] Bell, S. and Catlin, D., Boundary regularity of proper holomorphic mappings, Duke Math. J., 49, 1982, 385–396. MR0659947 (84b:32037a) · Zbl 0486.32014
[9] Diederich, K. and Fornæss, J. E., Boundary regularity of proper holomorphic mappings, Invent. Math., 67(3), 1982, 363–384. MR0664111 (84b:32037b) · Zbl 0501.32010
[10] Range, R. M., Holomorphic Functions and Integral Representations in Several Complex Variables, GTM 108, Springer, New York, 1986. MR0847923 (87i:32001) · Zbl 0591.32002
[11] Rudin, W., Function Theory in the Unit Ball of \(\mathbb{C}\) n , GMW 241, Springer-Verlag, New York, 1980. MR0601594 (82i:32002) · Zbl 0495.32001
[12] Bedford, E., Proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.), 10(2), 1984, 157–175. MR073 3691 (85b:32041) · Zbl 0534.32009
[13] Bell, S., Local boundary behavior of proper holomorphic mappings, Complex Analysis of Several Variables, Proc. Sympos. Pure Math., 41, A. M. S., Providence, 1984, 1–7. MR0740867 (85j:32043) · Zbl 0537.32005
[14] Bedford, E. and Fornæss, J. E., A construction of peak functions on weakly pseudoconvex domains, Annals of Math., 107(3), 1978, 555–568. MR0492400 (58 #11520) · Zbl 0392.32004
[15] Fornæss, J. E. and McNeal, J., A construction of peak functions on some finite type domains, Amer. J. Math., 116(3), 1994, 737–755. MR1277453 (95j:32023) · Zbl 0809.32005
[16] Diederich, K. and Fornæss, J. E., Proper holomorphic images of strictly pseudoconvex domains, Math. Ann., 259(2), 1982, 279–286. MR0656667 (83g:32026) · Zbl 0486.32013
[17] Grauert, H. and Remmert, R., Coherent Analytic Sheaves, GMW 265, Springer, Berlin, 1984. MR0755331 (86a:32001) · Zbl 0537.32001
[18] Bedford, E., Proper holomorphic mappings from strongly pseudoconvex domains, Duke Math. J., 49(2), 1982, 477–484. MR0659949 (84b:32036) · Zbl 0498.32011
[19] Huang, X. and Ji, S., Global holomorphic extension of a local map and a Riemann mapping theorem for algebraic domains, Math. Res. Lett., 5(1–2), 1998, 247–260. MR1617897 (99d:32013) · Zbl 0912.32010
[20] Boothby, W., An Introduction to Differentiable Manifolds and Riemannian Geometry, Second Edition, Pure and Applied Math., 120, Academic Press, Boston, 1986. MR0861409 (87k:58001) · Zbl 0596.53001
[21] Diederich, K. and Fornæss, J. E., Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math., 39(2), 1977, 129–141. MR0437806 (55 #10728) · Zbl 0353.32025
[22] Pinčuk, S. I., A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki, 15(2), 1974, 205–212; English transl., Math. Notes, 15(1–2), 116–120. MR0350065 (50 #2558)
[23] Baouendi, M. S., Rothschild, L. P. and Trèves, F., CR structures with group action and extendability of CR functions, Invent. Math., 82(2), 1985, 359–396. MR0809720 (87i:32028) · Zbl 0598.32019
[24] Chirka, E. M., Introduction to the geometry of CR manifolds, Uspekhi Mat. Nauk, 46(1), 1991, 81–164, Trans. in Russian Math. Surveys, 46(1), 1991, 95–197. MR1109037 (92m:32012) · Zbl 0742.32006
[25] Tanaka, N., On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan, 14, 1962. 397–429. MR0145555 (26 #3086) · Zbl 0113.06303
[26] Bell, S. and Catlin, D., Regularity of CR mappings, Math. Z., 199(3), 1988, 357–368. MR0961816 (89i:32028) · Zbl 0639.32011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.