zbMATH — the first resource for mathematics

On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries. (English) Zbl 1143.35080
Summary: We study the asymptotic behavior of solutions to the incompressible Navier-Stokes system considered on a sequence of spatial domains, whose boundaries exhibit fast oscillations with amplitude and characteristic wave length proportional to a small parameter. Imposing the complete slip boundary conditions we show that in the asymptotic limit the fluid sticks completely to the boundary provided the oscillations to be non-degenerate, i.e. not oriented in a single direction.

35Q30 Navier-Stokes equations
35B40 Asymptotic behavior of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Amirat, A.A.; Bresch, D.; Lemoine, J.; Simon, J., Effect of rugosity on a flow governed by stationary navier – stokes equations, Quart. appl. math., 59, 768-785, (2001) · Zbl 1019.76014
[2] Amirat, A.A.; Climent, E.; Fernández-Cara, E.; Simon, J., The Stokes equations with Fourier boundary conditions on a wall with asperities, Math. models methods appl. sci., 24, 255-276, (2001) · Zbl 1007.35058
[3] A. Basson, D. Gérard-Varet, Wall laws for fluid flows at a boundary with random roughness, preprint, 2006 · Zbl 1179.35207
[4] Bucur, D.; Buttazzo, G., Variational methods in shape optimization problems, Progress nonlinear differential equations appl., vol. 65, (2005), Birkhäuser Boston · Zbl 1117.49001
[5] Casado-Díaz, J.; Fernández-Cara, E.; Simon, J., Why viscous fluids adhere to rugose walls: A mathematical explanation, J. differential equations, 189, 526-537, (2003) · Zbl 1061.76014
[6] Jaeger, W.; Mikelić, A., On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. differential equations, 170, 96-122, (2001) · Zbl 1009.76017
[7] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow, (1969), Gordon and Breach New York · Zbl 0184.52603
[8] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta math., 63, 193-248, (1934) · JFM 60.0726.05
[9] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[10] Mohammadi, B.; Pironneau, O.; Valentin, F., Rough boundaries and wall laws, Internat J. numer. methods fluids, 27, 169-177, (1998) · Zbl 0904.76031
[11] Nečas, J., LES méthodes directes en théorie des équations elliptiques, (1967), Academia Praha · Zbl 1225.35003
[12] Nitsche, J.A., On Korn’s second inequality, RAIRO anal. numer., 15, 237-248, (1981) · Zbl 0467.35019
[13] Pedregal, P., Parametrized measures and variational principles, (1997), Birkhäuser Basel · Zbl 0879.49017
[14] Sohr, H., The navier – stokes equations: an elementary functional analytic approach, (2001), Birkhäuser Basel · Zbl 0983.35004
[15] Temam, R., Navier – stokes equations, (1977), North-Holland Amsterdam · Zbl 0335.35077
[16] Wolf, J., Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. math. fluid dynamics, 8, 1-35, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.