zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method. (English) Zbl 1143.35360
Summary: The Exp-function method is used for seeking solitary solutions, periodic solutions, and compacton-like solutions of nonlinear differential equations. The combined KdV-MKdV equation and the Liouville equation are chosen to illustrate the effectiveness and convenience of the proposed method.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
35B10Periodic solutions of PDE
35C10Series solutions of PDE
35-04Machine computation, programs (partial differential equations)
WorldCat.org
Full Text: DOI
References:
[1] He, J. H.; Wu, X. H.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos, solitons and fractals 29, 108-113 (2006) · Zbl 1147.35338
[2] Odibat, Z. M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. International journal of nonlinear science and numerical simulation 7, 27-34 (2006) · Zbl 05675858
[3] Bildik, N.; Konuralp, A.: The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. International journal of nonlinear science and numerical simulation 7, 65-70 (2006) · Zbl 1115.65365
[4] Momani, S.; Abuasad, S.: Application of he’s variational iteration method to Helmholtz equation. Chaos, solitons and fractals 27, 1119-1123 (2006) · Zbl 1086.65113
[5] He, J. H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos, solitons and fractals 26, 695-700 (2005) · Zbl 1072.35502
[6] He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems. International journal of nonlinear science and numerical simulation 6, 207-208 (2005)
[7] He, J. H.: New interpretation of homotopy perturbation method. International journal of modern physics B 20, No. 18, 2561-2568 (2006)
[8] El-Shahed, M.: Application of he’s homotopy perturbation method to Volterra’s integro-differential equation. International journal of nonlinear science and numerical simulation 6, 163-168 (2005)
[9] Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K.: Thin film flow of a third grade fluid on a moving belt by he’s homotopy perturbation method. International journal of nonlinear science and numerical simulation 7, 7-14 (2006) · Zbl 1187.76622
[10] Cai, X. C.; Wu, W. Y.; Li, M. S.: Approximate period solution for a kind of nonlinear oscillator by he’s perturbation method. International journal of nonlinear science and numerical simulation 7, 109-112 (2006)
[11] He, J. H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos, solitons and fractals 19, 847-851 (2004) · Zbl 1135.35303
[12] Liu, H. M.: Generalized variational principles for ion acoustic plasma waves by he’s semi-inverse method. Chaos, solitons and fractals 23, 573-576 (2005) · Zbl 1135.76597
[13] He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equations. Chaos, solitons and fractals 30, No. 3, 700-708 (2006) · Zbl 1141.35448
[14] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons and Fractals, in press (doi: 10.1016/j.chaos.2006.05.072)
[15] Wazwaz, A. M.: The tanh method: solitons and periodic solutions for the dodd--bullough--Mikhailov and the tzitzeica--dodd--bullough equations. Chaos, solitons and fractals 25, 55-63 (2005) · Zbl 1070.35076
[16] Abdusalam, H. A.: On an improved complex tanh-function method. International journal of nonlinear science and numerical simulation 6, 99-106 (2005)
[17] El-Sabbagh, M. F.; Ali, A. T.: New exact solutions for (3+1)-dimensional Kadomtsev--Petviashvili equation and generalized (2+1)-dimensional Boussinesq equation. International journal of nonlinear science and numerical simulation 6, 151-162 (2005)
[18] Bai, C. L.; Zhao, H.: Generalized extended tanh-function method and its application. Chaos, solitons and fractals 27, 1026-1035 (2006) · Zbl 1088.35534
[19] Abdou, M. A.; Soliman, A. A.: Modified extended tanh-function method and its application on nonlinear physical equations. Physics letters A 353, No. 6, 487-492 (2006)
[20] Ibrahim, R. S.; El-Kalaawy, O. H.: Extended tanh-function method and reduction of nonlinear Schrödinger-type equations to a quadrature. Chaos, solitons and fractals 31, No. 4, 1001-1008 (2007) · Zbl 1139.35396
[21] El-Wakil, S. A.; Abdou, M. A.: New exact travelling wave solutions using modified extended tanh-function method. Chaos, solitons and fractals 31, No. 4, 840-852 (2007) · Zbl 1139.35388
[22] Elwakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R.: Modified extended tanh-function method and its applications to nonlinear equations. Applied mathematics and computation 161, No. 2, 403-412 (2005) · Zbl 1062.35082
[23] Lü, Z.; Zhang, H.: Applications of a further extended tanh method. Applied mathematics and computation 159, No. 2, 401-406 (2004) · Zbl 1062.65111
[24] Pedit, F.; Wu, H.: Discretizing constant curvature surfaces via loop group factorizations: the discrete sine- and sinh-Gordon equations. Journal of geometry and physics 17, No. 3, 245-260 (1995) · Zbl 0856.58020
[25] Wazwaz, A. M.: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method. Computers & mathematics with applications 50, No. 10--12, 1685-1696 (2005) · Zbl 1089.35534
[26] Zhao, X.; Wang, L.; Sun, W.: The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos, solitons and fractals 28, No. 2, 448-453 (2006) · Zbl 1082.35014
[27] Zhaosheng, F.: Comment on ”on the extended applications of homogeneous balance method”. Applied mathematics and computation 158, No. 2, 593-596 (2004) · Zbl 1061.35108
[28] Zhang, J. -F.: Homogeneous balance method and chaotic and fractal solutions for the Nizhnik--Novikov--Veselov equation. Physics letters A 313, No. 5--6, 401-407 (2003) · Zbl 1040.35105
[29] Zhao, X.; Tang, D.: A new note on a homogeneous balance method. Physics letters A 297, No. 1--2, 59-67 (2002) · Zbl 0994.35005
[30] Zhang, J. L.; Wang, M. L.; Wang, Y. M.: The improved F-expansion method and its applications. Physics letters A 350, 103-109 (2006) · Zbl 1195.65211
[31] Fan, E.; Zhang, J.: Applications of the Jacobi elliptic function method to special-type nonlinear equations. Physics letters A 305, No. 6, 383-392 (2002) · Zbl 1005.35063
[32] Hon, Y. C.; Fan, E.: Uniformly constructing finite-band solutions for a family of derivative nonlinear Schrödinger equations. Chaos, solitons and fractals 24, No. 4, 1087-1096 (2005) · Zbl 1068.35156
[33] Yomba, E.: The extended Fan’s sub-equation method and its application to KdV--mkdv, BKK and variant Boussinesq equations. Physics letter A 336, 463-476 (2005) · Zbl 1136.35451
[34] Yomba, E.: The modified extended Fan sub-equation method and its application to (2+1)-dimensional dispersive long wave equation. Chaos, solitons and fractals 26, 785-794 (2005) · Zbl 1080.35096
[35] He, J. H.: Non-perturbative methods for strongly nonlinear problems. (2006)
[36] He, J. H.: Some asymptotic methods for strongly nonlinear equations. International journal of modern physics B 20, 1141-1199 (2006) · Zbl 1102.34039