zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational approach to solitons of nonlinear dispersive $K(m, n)$ equations. (English) Zbl 1143.35361
Summary: Via He’s semi-inverse method, a variational principle is established for the nonlinear dispersive $K(m, n)$ equations. Based on this formulation, a solitary solution can be easily obtained using Ritz method. The present paper provides a new approach to the search of wave solutions including solitions, compactons and periodic solutions.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
35A15Variational methods (PDE)
WorldCat.org
Full Text: DOI
References:
[1] Rosenau, P.; Hyman, J. M.: Compactons: solitons with finite wavelengths, Phys rev lett 70, No. 5, 564-567 (1993) · Zbl 0952.35502 · doi:10.1103/PhysRevLett.70.564
[2] Rosenau, P.: Compact and noncompact dispersive structure, Phys lett A 275, No. 3, 193-203 (2000) · Zbl 1115.35365 · doi:10.1016/S0375-9601(00)00577-6
[3] Wazwaz, A. M.: Existence and construction of compacton solutions, Chaos, solitons & fractals 19, 463-470 (2004) · Zbl 1068.35124 · doi:10.1016/S0960-0779(03)00171-1
[4] Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m,n)$ equations, Chaos, solitons & fractals 13, No. 22, 321-330 (2002) · Zbl 1028.35131
[5] Wazwaz, A. M.: Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl math comput 138, No. 2/3, 309-319 (2003) · Zbl 1029.35200
[6] He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equations, Chaos, solitons & fractals 30, No. 3, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[7] He, J. H.; Wu, X. H.: Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, solitons & fractals 29, No. 1, 108-113 (2006) · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[8] Wazwaz AM. The variational iteration method for rational solutions for KdV, K(2,2), Burgers, and cubic Boussinesq equations. JCAM.
[9] Tian LX, Yin JL. Shock-peakon and shock-compacton solutions for K(p,q) equation by variational iteration method. JCAM. · Zbl 1119.65099 · doi:10.1016/j.cam.2006.07.026
[10] He, J. H.: Some asymptotic methods for strongly nonlinear equations, Int J modern phys B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[11] He JH. Non-perturbative methods for strongly nonlinear problems. Berlin: dissertation. de-Verlag im Internet GmbH, 2006.
[12] He, J. H.: Application of homotopy perturbation method to nonlinear wave equations, Chaos solitons & fractals 26, No. 3, 695-700 (2005) · Zbl 1072.35502
[13] He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems, Int J nonlinear sci numer simulat 6, No. 2, 207-208 (2005)
[14] Inc, M.: New exact solitary pattern solutions of the nonlinearly dispersive $R(m,mn)$ equations, Chaos, solitons & fractals 29, No. 2, 499-505 (2006) · Zbl 1147.35348 · doi:10.1016/j.chaos.2005.08.051
[15] Zhu, Y. G.; Gao, X. S.: Exact special solitary solutions with compact support for the nonlinear dispersive $K(m,n)$ equations, Chaos, solitons & fractals 27, No. 2, 487-493 (2006) · Zbl 1088.35547 · doi:10.1016/j.chaos.2005.04.028
[16] Zhu, Y. G.; Lu, Z. S.: New exact solitary-wave special solutions for the nonlinear dispersive $K(m,n)$ equations, Chaos, solitons & fractals 27, No. 3, 836-842 (2006) · Zbl 1088.35548
[17] Zhu, Y. G.; Chang, Q. S.; Wu, S. C.: Exact solitary solutions with compact support for the nonlinear dispersive Boussinesq-like $B(m,n)$ equations, Chaos, solitons & fractals 26, No. 2, 407-413 (2005) · Zbl 1070.35047 · doi:10.1016/j.chaos.2005.01.005
[18] Zhu, Y. G.; Chang, Q. S.; Wu, S. C.: Construction of exact solitary solutions for Boussinesq-like $B(m,n)$ equations with fully nonlinear dispersion by the decomposition method, Chaos, solitons & fractals 26, No. 3, 897-903 (2005) · Zbl 1080.35097 · doi:10.1016/j.chaos.2005.01.031
[19] Tian, L. X.; Yin, J. L.: Stability of multi-compacton solutions and Bäcklund transformation in $K(m,n,1)$, Chaos, solitons & fractals 23, No. 1, 159-169 (2005) · Zbl 1075.37028
[20] Chen, Y.; Li, B.; Zhang, H. Q.: Auto-Bäcklund transformation and exact solutions for modified nonlinear dispersive $mK(m, n)$ equations, Chaos, solitons & fractals 17, No. 4, 693-698 (2003) · Zbl 1030.37049 · doi:10.1016/S0960-0779(02)00485-X
[21] Yan, Z. Y.: New families of exact solitary patterns solutions for the nonlinearly dispersive $R(m, n)$ equations, Chaos, solitons & fractals 15, No. 5, 891-896 (2003) · Zbl 1048.35100 · doi:10.1016/S0960-0779(02)00204-7
[22] He, J. H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int J turbo jet-engines 14, No. 1, 23-28 (1997)
[23] He, J. H.: Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, solitons & fractals 19, 847-851 (2004) · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[24] He, J. H.: Variational principle for non-Newtonian lubrication: rabinowitsch fluid model, Appl math comput 157, No. 1, 281-286 (2004) · Zbl 1095.76046 · doi:10.1016/j.amc.2003.07.028
[25] He, J. H.: Variational principle for nano thin film lubrication, Int J nonlinear sci numer simul 4, No. 3, 313-314 (2003)
[26] He, J. H.: Variational theory for one-dimensional longitudinal beam dynamics, Phys lett A 352, No. 4-5, 276-277 (2006) · Zbl 1187.74108 · doi:10.1016/j.physleta.2005.12.011
[27] He, J. H.: Variational theory for linear magneto-electro-elasticity, Int J nonlinear sci numer simul 2, No. 4, 309-316 (2001) · Zbl 1083.74526 · doi:10.1515/IJNSNS.2001.2.4.309
[28] He, J. H.: A variational principle for magnetohydrodynamics with high Hartmann number flow, Int J eng sci 40, No. 12, 1403-1410 (2002) · Zbl 1211.76145 · doi:10.1016/S0020-7225(02)00018-6
[29] He, J. H.: Generalized variational principles in fluids, (2003) · Zbl 1054.76001