×

The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit. (English) Zbl 1143.37002

Summary: We study the free path length and the geometric free path length in the model of the periodic two-dimensional Lorentz gas (Sinai billiard). We give a complete and rigorous proof for the existence of their distributions in the small-scatterer limit and explicitly compute them. As a corollary one gets a complete proof for the existence of the constant term \(c=2-3\ln 2+\frac{27\zeta(3)}{2\pi^2}\) in the asymptotic formula \(h(T)=-2 \ln \epsilon +c+o(1)\) of the KS entropy of the billiard map in this model, as conjectured by P. Dahlqvist.

MSC:

37A25 Ergodicity, mixing, rates of mixing
11B57 Farey sequences; the sequences \(1^k, 2^k, \dots\)
37A60 Dynamical aspects of statistical mechanics
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
82C40 Kinetic theory of gases in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Augustin V., Boca F.P., Cobeli C., Zaharescu A. (2001) The h-spacing distribution between Farey points. Math. Proc. Cambridge Phil. Soc. 131, 23–38 · Zbl 1161.11312
[2] Blank S., Krikorian N. (1993) Thom’s problem on irrational flows. Internat. J. Math. 4, 721–726 · Zbl 0813.58048
[3] Bleher P. (1992) Statistical properties of two-dimensional periodic Lorentz with infinite horizon. J. Stat. Phys. 66, 315–373 · Zbl 0925.82147
[4] Boca F.P., Cobeli C., Zaharescu A. (2000) Distribution of lattice points visible from the origin. Commun. Math. Phys. 213, 433–470 · Zbl 0989.11049
[5] Boca F.P., Cobeli C., Zaharescu A. (2001) A conjecture of R.R. Hall on Farey points. J. Reine Angew. Math. 535, 207–236 · Zbl 1006.11053
[6] Boca F.P., Gologan R.N., Zaharescu A. (2003) The average length of a trajectory in a certain billiard in a flat two-torus. New York J. Math. 9, 303–330 · Zbl 1066.37021
[7] Boca F.P., Gologan R.N., Zaharescu A. (2003) The statistics of the trajectory of a billiard in a flat two-torus. Commun. Math. Phys. 240, 53–73 · Zbl 1078.37006
[8] Bouchaud J.-P., Le Doussal P. (1985) Numerical study of a D-dimensional periodic Lorentz gas with universal properties. J. Stat. Phys. 41, 225–248
[9] Bourgain J., Golse F., Wennberg B. (1998) On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190, 491–508 · Zbl 0910.60082
[10] Bunimovich L.: Billiards and other hyperbolic systems. In: Dynamical systems, ergodic theory and applications, edited by Ya.G. Sinai, Encyclopaedia Math. Sci. Vol. 100, Berlin: Springer-Verlag, 2000, pp. 192–233 · Zbl 1417.37009
[11] Caglioti E., Golse F. (2003) On the distribution of free path lengths for the periodic Lorentz gas III. Commun. Math. Phys. 236, 199–221 · Zbl 1041.82016
[12] Chernov N. (1991) New proof of Sinai’s formula for the entropy of hyperbolic billiard systems. Application to Lorentz gases and Bunimovich stadium. Funct. Anal. and Appl. 25(3): 204–219 · Zbl 0748.58015
[13] Chernov N.: Entropy values and entropy bounds. In: Hard ball systems and the Lorentz gas, edited by D. Szász, Encyclopaedia Math. Sci., Vol. 101, Berlin: Springer-Verlag, 2000, pp. 121–143 · Zbl 0995.37006
[14] Dahlqvist P. (1997) The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity 10, 159–173 · Zbl 0907.58038
[15] Deshouillers J.-M., Iwaniec H. (1982/1983) Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70, 219–288 · Zbl 0502.10021
[16] Dumas H.S., Dumas L., Golse F. (1997) Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Stat. Phys. 87(3/4): 943–950 · Zbl 0952.82512
[17] Erdös P. (1959) Some results on diophantine approximation. Acta Arith. 5, 359–369 · Zbl 0097.03502
[18] Erdös P., Szüsz P., Turán P. (1958) Remarks on the theory of diophantine approximation. Colloq. Math. 6, 119–126 · Zbl 0087.04305
[19] Estermann T. (1961) On Kloosterman’s sum. Mathematika 8, 83–86 · Zbl 0114.26302
[20] Friedman B. Niven I. (1959) The average first recurrence time. Trans. Amer. Math. Soc. 92, 25–34 · Zbl 0087.42006
[21] Friedman B., Oono Y., Kubo I. (1984) Universal behaviour of Sinai billiard systems in the small-scatterer limit. Phys. Rev. Lett. 52, 709–712
[22] Gallavotti G.: Lectures on the billiard. In: Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), edited by J. Moser, Lecture Notes in Phys. Vol. 38, Berlin-Heidelberg-Newyork: Springer-Verlag, 1975, pp. 236–295
[23] Goldfeld D., Sarnak P. (1983) Sums of Kloosterman sums. Invent. Math. 71, 243–250 · Zbl 0507.10029
[24] Golse F. On the statistics of free-path lengths for the periodic Lorentz gas. In: XIV International Congress on Mathematical Physics (Lisbon, 2003), edited by J.-C. Zambrini, River Edge, NJ: World Sci. Publ., 2006, pp. 439–446 · Zbl 1221.82081
[25] Golse F., Wennberg B. (2000) On the distribution of free path lengths for the periodic Lorentz gas I. M2AN Math. Model. Numer. Anal. 34, 1151–1163 · Zbl 1006.82025
[26] Gutzwiller M.: Physics and arithmetic chaos in the Fourier transform. In: The mathematical beauty of physics (Saclay, 1996). edited by J.M. Drouffe J.B. Zuber, Adv. Series in Math. Phys. Vol. 24, River Edge, NJ: World Sci. Publ., 1997, pp. 258–280 · Zbl 1058.81543
[27] Hooley C. (1957) An asymptotic formula in the theory of numbers. Proc. London Math. Soc. 7, 396–413 · Zbl 0079.27301
[28] Kesten H. (1962) Some probabilistic theorems on diophantine approximations. Trans. Amer. Math. Soc. 103, 189–217 · Zbl 0105.03805
[29] Kuznetsov N.V. The Petterson conjecture for forms of weight zero and Linnik’s conjecture. Math. Sb. (N.S.) 111(153): 334–383, 479 (1980) · Zbl 0427.10016
[30] Lewin L., (1958) Dilogarithms and associated functions. London, Macdonald & Co. London · Zbl 0083.35904
[31] Lorentz H.A.: Le mouvement des électrons dans les métaux. Arch. Néerl. 10, 336 (1905). Reprinted in Collected papers. Vol. 3. The Hague: Martinus Nijhoff, 1936
[32] Pólya G. (1918) Zahlentheoretisches und wahrscheinlichkeitstheoretisches über die sichtweite im walde. Arch. Math. Phys. 27, 135–142 · JFM 46.0284.01
[33] Santaló L.A. (1943) Sobre la distribucion probable de corpusculos en un cuerpo. Deducida de la distribucion en sus secciones y problemas analogos. Rev. Un. Mat. Argentina 9, 145–164
[34] Sinai Y.G. (1970) Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surveys 25, 137–189 · Zbl 0252.58005
[35] Weil A. (1948) On some exponential sums. Proc. Nat. Acad. Sci. USA 34, 204–207 · Zbl 0032.26102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.