×

zbMATH — the first resource for mathematics

Atomic surfaces, tilings and coincidence. I: Irreducible case. (English) Zbl 1143.37013
An irreducible and unimodular Pisot substitution can be associated with a graph-directed iterated function system. The invariant sets of this iterated function system are called the partial atomic surfaces, the union of these invariant sets is called the atomic surface of the substitution. Several types of tilings have been associated to the class of irreducible and unimodular Pisot substitutions. In the paper under review the authors construct a quasiperiodic collection which consists of translations of partial atomic surfaces. It is investigated when this collection is a tiling. Basing on the coincidence condition by F. M. Dekking [Z. Wahrscheinlichkeitstheor. Verw. Geb. 41, 221–239 (1978; Zbl 0348.54034)], the authors introduce the super-coincidence condition for substitutions and study its role for atomic surfaces.

MSC:
37B50 Multi-dimensional shifts of finite type, tiling dynamics (MSC2010)
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Arnoux, V. Berthé and S. Ito,Discrete planes, \(\mathbb{Z}\)2-actions, Jacobi-Perron algorithm and substitutions, Annales de l’Institut Fourier (Grenoble)52 (2002), 305–349. · Zbl 1017.11006
[2] P. Arnoux and S. Ito,Pisot substitutions and Rauzy fractals, Bulletin of the Belgium Mathematical Society – Simon Stevin8 (2001), 181–207. · Zbl 1007.37001
[3] S. Akiyama,Self-affine tiling and Pisot numeration system, inNumber Theory and its Applications (K. Gyory and S. Kanemitsu, eds.), Kluwer, Dordrecht, 1999, pp. 7–17. · Zbl 0999.11065
[4] S. Akiyama,On the boundary of self-affine tilings generated by Pisot numbers, Journal of the Mathematical Society of Japan54 (2002), 283–308. · Zbl 1032.11033
[5] S. Akiyama, H. Rao and W. Steiner,A certain finiteness property of Pisot number systems, Journal of Number Theory107 (2004), 135–160. · Zbl 1052.11055
[6] M. Barge and B. Diamond,Coincidence for substitutions of Pisot type, Bulletin de la Société Mathématique de France130 (2002), 619–626. · Zbl 1028.37008
[7] M. Baake and U. Grimm,A guide to quasicrystal literature, inDirections in Mathematical Quasicrystals, CRM Monogrograph Series 13, American Mathematical Society, Providence, RI, 2000, pp. 371–373. · Zbl 0968.52014
[8] V. Berthé and H. Rao,On super-coincidence condition, Preprint, 2005.
[9] V. Canterini and A. Siegel,Geometric representation of substitutions of Pisot type, Transactions of the American Mathematical Society353 (2001), 5121–5144. · Zbl 1142.37302
[10] F.M. Dekking,The spectrum of dynamical systems arising from substitutions of constant lenght, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete41 (1977/78), 221–239. · Zbl 0348.54034
[11] H. Ei and S. Ito,Tilings from characteristic polynomials of {\(\beta\)}-expansion, Preprint 2000.
[12] H. Ei, S. Ito and H. Rao,Atomic surfaces and self-similar tilings II: Reducible case, Preprint 2003. · Zbl 1119.52013
[13] K. Falconer,Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990. · Zbl 0689.28003
[14] K. Falconer,Techniques in Fractal Geometry, Wiley, Chichester, 1997. · Zbl 0869.28003
[15] D. J. Feng, M. Furukado, S. Ito and J. Wu,Pisot substitutions and the Hausdorff dimension of boundaries of atomic surface, inSubstitution and its Application: Research Report Grand-in-Aid Scientific Research (C)(2), (Project number 09640291), Japan.
[16] P. Fogg,Substitutions in dynamics, Arithmetics and combinatorics, Lecture Notes in Mathematics1794, Springer, Berlin, 2002. · Zbl 1014.11015
[17] C. Frougny and B. Solomyak,Finite beta-expansions, Ergodic Theory and Dynamical Systems12 (1992), 713–723. · Zbl 0814.68065
[18] C. Holton and L. Zamboni,Geometric realizations of substitutions, Bulletin de la Société Mathématique de France126 (1998), 149–179. · Zbl 0931.11004
[19] B. Host,Valeurs propres des systemès dynamiques définis par des substitutions de longeur variable, Ergodic Theory and Dynamical Systems6 (1986), 529–540. · Zbl 0625.28011
[20] B. Host, unpublished manuscript.
[21] M. Hollander and B. Solomyak,Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory and Dynamical Systems23 (2003), 533–540. · Zbl 1031.11010
[22] S. Ito and M. Kimura,On Rauzy fractal, Japan Journal of Industrial and Applied Mathematics8 (1991), 461–486. · Zbl 0734.28010
[23] S. Ito and M. Otsuki,Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo Journal of Mathematics16 (1993), 441–472. · Zbl 0805.11056
[24] S. Ito and H. Rao,Purely periodic {\(\beta\)}-expansions with Pisot unit base, Proceedings of the American Mathematical Society133 (2005), 953–964. · Zbl 1099.11062
[25] S. Ito and Y. Sano,On periodic {\(\beta\)}-expansions of Pisot numbers and Rauzy fractals, Osaka Journal of Mathematics38 (2001), 349–368. · Zbl 0991.11040
[26] R. Kenyon,Self-replicating tilings, inSymbolic Dynamics and its Applications, Contemporary Mathematics Series, Vol. 135 (P. Walters, ed.), American Mathematical Society, Providence, RI, 1992. · Zbl 0770.52013
[27] R. Kenyon and A. Vershik,Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory and Dynamical Systems18 (1998), 357–372. · Zbl 0915.58077
[28] J. M. Luck, C. Godreche, A. Janner and T. Janssen,The nature of the atomic surfaces of quasiperiodic self-similar structures, Journal of Physics. A. Mathematical and General26 (1993), 1951–1999. · Zbl 0785.11057
[29] A. Messaoudi,Frontière du fractal de Rauzy et système de numération complexe (French)[Rauzy fractal boundary and complex number system], Acta Arithmetica95 (2000), 195–224. · Zbl 0968.28005
[30] R. D. Mauldin and S. Williams,Hausdorff dimension in graph directed constructions, Transactions of the American Mathematical Society309 (1998), 811–823. · Zbl 0706.28007
[31] B. Praggastis,Numeration systems and Markov partitions from self-similar tilings, Transactions of the American Mathematical Society351 (1999), 3315–3349. · Zbl 0984.11008
[32] M. Queffelec,Substitution Dynamical Systems – Spectral Analysis, Lecture Notes in Mathematics1294, Springer-Verlag, New York, 1987.
[33] G. Rauzy,Nombres algebriques et sustitutions, Bulletin de la Société Mathématique de France110 (1982), 147–178.
[34] A. Siegel,Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Annales de l’Institut Fourier (Grenoble)54 (2004), 341–381. · Zbl 1083.37009
[35] A. Siegel,Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot, Thèsis de Doctorat, Université de la Méditérranée, 2000.
[36] V. Sirvent and Y. Wang,Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific Journal of Mathematics206 (2002), 465–485. · Zbl 1048.37015
[37] W. P. Thurston,Groups, tilings, and finite state automata, American Mathematical Society, Providence, RI, 1989.
[38] J. Thuswaldner,Unimodular Pisot substitutions and their associated tiles, Preprint 2004. · Zbl 1161.37016
[39] A. Vince,Digit tiling of Euclidean space, inDirections in Mathematical Quasicrystals, CRM Monograph Series 13, American Mathematical Society, Providence, RI, 2000, pp. 329–370. · Zbl 0972.52012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.