Sgibnev, M. S. Homogeneous conservative Wiener-Hopf equation. (English. Russian original) Zbl 1143.45001 Sb. Math. 198, No. 9, 1341-1350 (2007); translation from Mat. Sb. 198, No. 9, 123-132 (2007). A function \(S(x)\) satisfying the equation \[ S(x)= \int^\infty_0 k(x-y)S(y)\,dy,\;x> 0,\quad k(x)= k(-x)\geq 0,\quad \int^\infty_{-\infty} k(x)\,dx= 1, \] is said to be its \(P^*\)-solution if it is nondecreasing, right-continuous, non-trivial and \(S(x)= 0\) for \(x< 0\). Main result: The renewal function \(u_+(x)\) is a \(P^*\)-solution of the homogeneous generalized Wiener-Hopf equation \[ S(x)= \int^x_{-\infty} S(x-y) F(dy),\quad x\geq 0, \] where \(F\) is a distribution of the recurrent type, with the condition \(u_+(0+)= 1\). Asymptotic properties of such solutions are also studied. Reviewer: D. Przeworska-Rolewicz (Warszawa) Cited in 5 Documents MSC: 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) 60G50 Sums of independent random variables; random walks Keywords:renewal function; random walk; symmetric probability distribution of recurrent type PDF BibTeX XML Cite \textit{M. S. Sgibnev}, Sb. Math. 198, No. 9, 1341--1350 (2007; Zbl 1143.45001); translation from Mat. Sb. 198, No. 9, 123--132 (2007) Full Text: DOI