zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized quasi-variational-like hemivariational inequalities. (English) Zbl 1143.49009
Summary: We introduce and study a new class of generalized quasi-variational-like hemivariational inequalities with multi-valued $\eta $-pseudomonotone operators in Banach spaces. Some new existence theorems of solutions for this class of generalized quasi-variational-like hemivariational inequalities are proved. The results presented in this paper generalize and extend some known results.

MSC:
49J40Variational methods including variational inequalities
47H05Monotone operators (with respect to duality) and generalizations
47H04Set-valued operators
49J40Variational methods including variational inequalities
WorldCat.org
Full Text: DOI
References:
[1] Aubin, J. P.; Frankowska, H.: Set valued analysis, (1990) · Zbl 0713.49021
[2] Auslender, A.; Teboulle, M.: Asymptotic cones and functions in optimization and variational inequalities, (2003) · Zbl 1017.49001
[3] Barbu, V.: Optimal control of variational inequalities, Research notes in mathematics 100 (1984) · Zbl 0574.49005
[4] Carl, S.; Le, V. K.; Motreanu, D.: The sub-supersolutio method and extremal solutions for quasilinear hemivariational inequalities, Differential integral equations 17, 165-178 (2004) · Zbl 1164.35301
[5] Carl, S.; Le, V. K.; Motreanu, D.: Existence and comparison principles for general quasilinear variational--hemivariational inequalities, J. math. Anal. appl. 302, 65-83 (2005) · Zbl 1061.49007 · doi:10.1016/j.jmaa.2004.08.011
[6] Carl, S.; Le, V. K.; Motreanu, D.: Existence and comparison results for quasilinear evolution hemivariational inequalities, Electron. J. Differential equations 57, 1-17 (2004) · Zbl 1053.49005 · emis:journals/EJDE/Volumes/2004/57/abstr.html
[7] Chang, K. C.: Critical point theorem and its applications, (1986) · Zbl 0633.58010
[8] Clarke, F. H.: Optimization and nonsmooth analysis, (1990) · Zbl 0696.49002
[9] Filippakis, M. E.; Papageorgious, N. S.: Solvability of nonlinear variational--hemivariational inequalities, J. math. Anal. appl. 311, 162-181 (2005) · Zbl 1082.49008 · doi:10.1016/j.jmaa.2005.02.029
[10] Giannessi, F.; Maugeri, A.; Pardalos, P. M.: Equilibrium problems: nonsmooth optimization and variational inequality models, (2001) · Zbl 0979.00025
[11] Goeleven, D.; Motreanu, D.: Variational and hemivariational inequalities--theory, methods and applications, vol. II: unilateral problems, (2003) · Zbl 1259.49001
[12] Goeleven, D.; Motreanu, D.; Dumont, Y.; Rochdi, M.: Variational and hemivariational inequalities--theory, methods and applications, vol. I: unilateral analysis and unilateral mechanic, (2003) · Zbl 1259.49002
[13] Halidias, N.; Naniewicz, Z.: On a class of hemivariational inequalities at resonance, J. math. Anal. appl. 289, 584-607 (2004) · Zbl 1041.49007 · doi:10.1016/j.jmaa.2003.08.044
[14] Haslinger, J.; Panagiotopoulos, P. D.: Optimal control of systems governed by hemivariational inequalities, existence and approximation results, Nonlinear anal. TMA 24, 105-119 (1995) · Zbl 0827.49008 · doi:10.1016/0362-546X(93)E0022-U
[15] Huang, N. J.; Deng, C. X.: Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. math. Anal. appl. 256, 345-359 (2001) · Zbl 0972.49008 · doi:10.1006/jmaa.2000.6988
[16] Huang, N. J.; Fang, Y. P.: Auxiliary principle technique for soling generalized set-valued nonlinear quasi-variational-like inequalities, Math. inequal. Appl. 6, 339-350 (2003) · Zbl 1031.49015
[17] Kinderlehrer, D.; Stampacchia, G.: An introduction to variational inequalities and their application, (1980) · Zbl 0457.35001
[18] Kneser, H.: Sur un theoreme fondamantel de la theorie des jeux, CR acad. Sci. Paris 234, 2418-2420 (1952) · Zbl 0046.12201
[19] Liu, Z. H.: Existence results for evolution noncoercive hemivariational inequalities, J. optim. Theory appl. 120, 417-427 (2004) · Zbl 1047.49009 · doi:10.1023/B:JOTA.0000015929.70665.87
[20] Liu, Z. H.: Generalized quasi-variational hemi-variational inequalities, Appl. math. Lett. 17, 741-745 (2004) · Zbl 1058.49006 · doi:10.1016/S0893-9659(04)90115-2
[21] Liu, Z. H.: Browder--Tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse problems 21, 13-20 (2005) · Zbl 1078.49006 · doi:10.1088/0266-5611/21/1/002
[22] Lunsford, M. L.: Generalized variational and quasi-variational inequalities with discontinuous operators, J. math. Anal. appl. 214, 245-263 (1997) · Zbl 0945.49003 · doi:10.1006/jmaa.1997.5625
[23] Michael, E.: Continuous selections, I, Ann. of math. 63, 361-382 (1956) · Zbl 0071.15902 · doi:10.2307/1969615
[24] Motreanu, D.; Panagiotopoulos, P. D.: Minimax theorems and qualitative properties of the solutions of hemivariational inequalities and applications, (1999) · Zbl 1060.49500
[25] Motreanu, D.; Radulescu, V.: Variational and non-variational methods in nonlinear analysis and boundary value problems, (2003)
[26] Naniewicz, Z.; Panagiotopoulos, P. D.: Mathematical theory of hemivariational inequalities and applications, (1995) · Zbl 0968.49008
[27] Panagiotopoulos, P. D.: Hemivariational inequalities, applications in mechanics and engineering, (1993) · Zbl 0826.73002
[28] Panagiotopoulos, P. D.: Coercive and semicoercive hemivariational inequalities, Nonlinear anal. TMA 16, 209-231 (1991) · Zbl 0733.49012 · doi:10.1016/0362-546X(91)90224-O
[29] Panagiotopoulos, P. D.: Nonconvex energy functions, hemivariational inequalities and substationarity principles, Acta mech. 42, 160-183 (1983) · Zbl 0538.73018
[30] Panagiotopoulos, P. D.; Fundo, M.; Radulescu, V.: Existence theorems of hartman--stampacchia type for hemivariational inequalities and applications, J. global optim. 15, 41-54 (1999) · Zbl 0951.49018 · doi:10.1023/A:1008340210469
[31] Parida, J.; Sen, A.: A variational-like inequality for multifunctions with applications, J. math. Anal. appl. 124, 73-81 (1987) · Zbl 0615.49003 · doi:10.1016/0022-247X(87)90025-4
[32] Schaible, S.; Yao, J. C.; Zeng, L. C.: A proximal method for pseudomonotone type variational-like inequalities, Taiwanese J. Math. 10, 497-513 (2006) · Zbl 1116.49004
[33] Xiao, Y. B.; Huang, N. J.: Sub-supersolution method and extremal solutions for higher order quasi-linear elliptic hemi-variational inequalities, Nonlinear anal. TMA 66, 1739-1752 (2007) · Zbl 1110.49012 · doi:10.1016/j.na.2006.02.021
[34] Zeidler, E.: Nonlinear functional analysis and its applications I, (1990) · Zbl 0684.47029
[35] Zeng, L. C.; Guu, S. M.; Yao, J. C.: Iterative algorithm for completely generalized set-valued strongly nonlinear mixed variational-like inequalities, Comput. math. Appl. 50, 935-945 (2005) · Zbl 1081.49011 · doi:10.1016/j.camwa.2004.12.017
[36] Zeng, L. C.; Lin, L. J.; Yao, J. C.: Auxiliary problem method for mixed variational-like inequalities, Taiwanese J. Math. 10, 515-529 (2006) · Zbl 1259.49010