zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational iteration decomposition method for solving eighth-order boundary value problems. (English) Zbl 1143.49023
Summary: We implement a relatively new analytical technique, the variational iteration decomposition method, for solving the eighth-order boundary value problems. The proposed method is an elegant combination of variational iteration method and decomposition method. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Numerical work is given to check the efficiency of the method. Comparisons are made to confirm the reliability and accuracy of the technique. The technique can be used as an alternative for solving nonlinear boundary value problems.

MSC:
49M30Other numerical methods in calculus of variations
65L10Boundary value problems for ODE (numerical methods)
WorldCat.org
Full Text: DOI EuDML
References:
[1] S. ChandraSekhar, in Hydrodynamic and Hydro Magnetic Stability, Dover, New York, NY, USA, 1981.
[2] K. Djidjeli, E. H. Twizell, and A. Boutayeb, “Numerical methods for special nonlinear boundary value problems of order 2m,” Journal of Computational and Applied Mathematics, vol. 47, no. 1, pp. 35-45, 1993. · Zbl 0780.65046 · doi:10.1016/0377-0427(93)90088-S
[3] M. A. Noor and S. T. Mohyud-Din, “Homotopy method for solving eighth order boundary value problems,” Journal of Mathematical Analysis and Approximation Theory, vol. 1, no. 2, pp. 161-169, 2006. · Zbl 1204.65086
[4] S. S. Siddiqi and E. H. Twizell, “Spline solution of linear eighth-order boundary value problems,” Computer Methods in Applied Mechanics and Engineering, vol. 131, no. 3-4, pp. 309-325, 1996. · Zbl 0881.65076 · doi:10.1016/0045-7825(96)88162-X
[5] A.-M. Wazwaz, “The numerical solution of special eight-order boundary value problems by the modified decomposition method,” Neural, Parallel & Scientific Computations, vol. 8, no. 2, pp. 133-146, 2000. · Zbl 0983.65091
[6] A. Boutayeb and E. H. Twizell, “Finite-difference methods for the solution of special eighth-order boundary-value problem,” International Journal of Computer Mathematics, vol. 48, no. 1, pp. 63-75, 1993. · Zbl 0820.65046 · doi:10.1080/00207169308804193
[7] R. E. D. Bishop, S. M. Cannon, and S. Miao, “On coupled bending and torsional vibration of uniform beams,” Journal of Sound and Vibration, vol. 131, no. 1, pp. 457-464, 1989. · Zbl 1235.74158 · doi:10.1016/0022-460X(89)91005-5
[8] R. P. Agarwal, in Boundary Value Problems for Higher Order Differential Equations, p. xii+307, World Scientific, Teaneck, NJ, USA, 1986. · Zbl 0619.34019
[9] J. H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[10] J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[11] J. H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[12] J. H. He, “Comparison of homotopy perturbation method and homotopy analysis method,” Applied Mathematics and Computation, vol. 156, no. 2, pp. 527-539, 2004. · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[13] J. H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207-208, 2005.
[14] J. H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287-292, 2004. · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[15] J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[16] J. H. He, “Variational iteration method-a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 05137891 · doi:10.1016/S0020-7462(98)00048-1
[17] J. H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115-123, 2000. · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[18] J. H. He, “Variational iteration method-some recent results and new interpretations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 3-17, 2007. · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[19] J. H. He and X. H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp. 108-113, 2006. · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[20] M. Inokuti, H. Sekine, and T. Mura, “General use of the Lagrange multiplier in nonlinear mathematical physics,” in Variational Method in the Mechanics of Solids, pp. 156-162, Pergamon Press, New York, NY, USA, 1978.
[21] M. A. Noor and S. T. Mohyd-Din, “Variational iteration method for solving sixth order boundary value problems,” preprint, 2007.
[22] M. A. Noor and S. T. Mohyd-Din, “An efficient method for fourth order boundary value problems,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1101-1111, 2007. · Zbl 1141.65375 · doi:10.1016/j.camwa.2006.12.057
[23] M. A. Noor and S. T. Mohyud-Din, “Homotopy method for solving eighth order boundary value problems,” Journal of Mathematical Analysis and Approximation Theory, vol. 1, no. 2, pp. 161-169, 2006. · Zbl 1204.65086
[24] M. A. Noor and S. T. Mohyud-Din, “An efficient algorithm for solving fifth-order boundary value problems,” Mathematical and Computer Modelling, vol. 45, no. 7-8, pp. 954-964, 2007. · Zbl 1133.65052 · doi:10.1016/j.mcm.2006.09.004
[25] M. A. Noor and S. T. Mohyud-Din, “Variational iteration technique for solving higher order boundary value problems,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1929-1942, 2007. · Zbl 1122.65374 · doi:10.1016/j.amc.2006.12.071
[26] A.-M. Wazwaz, “Approximate solutions to boundary value problems of higher order by the modified decomposition method,” Computers & Mathematics with Applications, vol. 40, no. 6-7, pp. 679-691, 2000. · Zbl 0959.65090 · doi:10.1016/S0898-1221(00)00187-5
[27] A.-M. Wazwaz, “A reliable modification of Adomian decomposition method,” Applied Mathematics and Computation, vol. 102, no. 1, pp. 77-86, 1999. · Zbl 0928.65083 · doi:10.1016/S0096-3003(98)10024-3
[28] A.-M. Wazwaz, “A new algorithm for calculating adomian polynomials for nonlinear operators,” Applied Mathematics and Computation, vol. 111, no. 1, pp. 33-51, 2000. · Zbl 1023.65108 · doi:10.1016/S0096-3003(99)00047-8
[29] S. Abbasbandy, “A new application of He/s variational iteration method for quadratic Riccati differential equation by using Adomian/s polynomials,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 59-63, 2007. · Zbl 1120.65083 · doi:10.1016/j.cam.2006.07.012
[30] S. Abbasbandy, “Numerical solution of non-linear Klein-Gordon equations by variational iteration method,” International Journal for Numerical Methods in Engineering, vol. 70, no. 7, pp. 876-881, 2007. · Zbl 1194.65120 · doi:10.1002/nme.1924