zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact travelling wave solutions in a nonlinear elastic rod equation. (English) Zbl 1143.74033
Summary: We consider exact parametric representations of travelling wave solutions for an elastic rod equation. By using the method of plane dynamical systems, in different parameter regions, we give bifurcations of phase portraits of the travelling wave system. Exact explicit kink wave solutions, periodic wave solutions and some unbounded wave solutions are obtained.

74J30Nonlinear waves (solid mechanics)
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
Full Text: DOI
[1] Fan, E. G.; Dai, H. H.: A direct approach with computerized symbolic computation for finding a series of traveling waves to nonlinear equations. Comput. phys. Commun. 153, 17-30 (2003) · Zbl 1196.35182
[2] Chow, K. W.: Solitary waves on a continuous wave background. J. phys. Soc. jpn. 64, 1524-1528 (1995)
[3] Porubov, A. V.; Parker, D. F.: Some general periodic solutions to coupled nonlinear Schrödinger equations. Wave motion 29, 97-108 (1999) · Zbl 1074.35579
[4] Zhuang, W.; Zhang, S. Y.: The strain solitary waves in a nonlinear elastic rod. Acta mech sin 20, 58-67 (1988)
[5] Zhuang, W.; Zhang, G. T.: The propagation of solitary waves in a nonlinear elastic rod. Appl. math. Mech. 7, 615-626 (1986) · Zbl 0602.73025
[6] Duan, W. S.; Zhao, J. B.: Solitary waves in a quadric nonlinear elastic rod. Chaos solitons fract. 11, 1265-1267 (2000) · Zbl 0961.74036
[7] Lu, K. P.; Guo, P.; Zhang, L.; Yi, J. Q.; Duan, W. S.: Perturbation analysis for wave equation of nonlinear elastic rod. Appl. math. Mech. 27, 1233-1238 (2006) · Zbl 1258.74018
[8] Byrd, P. F.; Fridman, M. D.: Handbook of elliptic integrals for engineers and scientists. (1971) · Zbl 0213.16602
[9] Guckenheimer, J.; Holmes, P. J.: Nonlinear oscillation dynamical systems and bifurcations of vector fields. (1983) · Zbl 0515.34001
[10] Dai, H. H.; Huo, Y.: Solitary waves in an inhomogeneous rod composed of a general hyperelastic material. Acta mech. 35, 55-69 (2002) · Zbl 1120.76304
[11] Porubov, A. V.; Velarde, M. G.: Strain kinks in an elastic rod embedded in a viscoelastic medium. Wave motion 35, 189-204 (2002) · Zbl 1163.74425
[12] Li, J. B.; Wu, J. H.; Zhu, H. P.: Travelling waves for an integrable higher order KdV type wave equations. Int. J. Bifurc. chaos 16, 2235-2260 (2006) · Zbl 1192.37100