×

zbMATH — the first resource for mathematics

Statistical estimates for channel flows driven by a pressure gradient. (English) Zbl 1143.76421
Summary: We present rigorous estimates for some physical quantities related to turbulent and non-turbulent channel flows driven by a uniform pressure gradient. Such results are based on the concept of stationary statistical solutions, which is related to the notion of ensemble averages for flows in statistical equilibrium. We provide a lower bound estimate for the mean skin friction coefficient and improve on a previous upper bound estimate for the same quantity; both estimates are derived in terms of the Reynolds number. We also present lower and upper bound estimates for the mean rate of energy dissipation, the mean longitudinal bulk velocity (in the direction of the pressure gradient), and the mean kinetic energy in terms of various physical parameters. In particular, we obtain an upper bound related to the energy dissipation law, namely that the mean rate of energy dissipation is essentially bounded by a non-dimensional universal constant times the cube of the mean longitudinal bulk velocity over a characteristic macro-scale length. Finally, we investigate the scale-by-scale energy injection due to the pressure gradient, proving an upper bound estimate for the decrease of this energy injection as the scale length decreases.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76F10 Shear flows and turbulence
76M35 Stochastic analysis applied to problems in fluid mechanics
76F55 Statistical turbulence modeling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batchelor, G.K., The theory of homogeneous turbulence, (1953), Cambridge University Press Cambridge · Zbl 0053.14404
[2] Bercovici, H.; Constantin, P.; Foias, C.; Manley, O.P., Exponential decay of the power spectrum of turbulence, J. statist. phys., 80, 3-4, 579-602, (1995) · Zbl 1081.35505
[3] Constantin, P.; Doering, C.R., Variational bounds on energy dissipation in incompressible flows: shear flow, Phys. rev. E, 49, 4087-4099, (1994)
[4] Constantin, P.; Doering, C.R., Variational bounds on energy dissipation in incompressible flows II: channel flow, Phys. rev. E, 51, 3192-3198, (1995)
[5] Constantin, P.; Foias, C., Navier – stokes equation, (1989), University of Chicago Press Chicago
[6] Foias, C., Statistical study of the navier – stokes equations I, Rend. sem. mat. univ. Padova, 48, 219-348, (1972) · Zbl 0283.76017
[7] Foias, C., Statistical study of the navier – stokes equations II, Rend. sem. mat. univ. Padova, 49, 9-123, (1973) · Zbl 0283.76018
[8] Foias, C., What do the navier – stokes equations tell us about turbulence?, Harmonic analysis and nonlinear differential equations (riverside, CA, 1995), Contemp. math., 208, 151-180, (1997) · Zbl 0890.76030
[9] Foias, C.; Jolly, M.S.; Manley, O.P., Kraichnan turbulence via finite time averages, Commun. math. phys., 255, 2, 329-361, (2005) · Zbl 1065.76101
[10] Foias, C.; Jolly, M.S.; Manley, O.P.; Rosa, R., Statistical estimates for the navier – stokes equations and the kraichnan theory of 2-D fully developed turbulence, J. statist. phys., 108, 591-645, (2002) · Zbl 1158.76327
[11] Foias, C.; Jolly, M.S.; Manley, O.P.; Rosa, R.; Temam, R., Kolmogorov theory via finite-time averages, Phys. D, 212, 3-4, 245-270, (2005) · Zbl 1083.35091
[12] Foias, C.; Manley, O.P.; Rosa, R.; Temam, R., ()
[13] Foias, C.; Manley, O.P.; Rosa, R.; Temam, R., Cascade of energy in turbulent flows, C.R. acad. sci. Paris, Série I, 332, 509-514, (2001) · Zbl 0986.35089
[14] Foias, C.; Manley, O.P.; Rosa, R.; Temam, R., Estimates for the energy cascade in three-dimensional turbulent flows, C. R. acad. sci. Paris, Série I, 333, 499-504, (2001) · Zbl 1172.76319
[15] Foias, C.; Temam, R., The connection between the navier – stokes equations, dynamical systems, and turbulence theory, (), 55-73, Madison, WI, 1985
[16] Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. (doklady) acad. sci. URSS (N.S.), 30, 301-305, (1941) · JFM 67.0850.06
[17] Ladyzhenskaya, O., The mathematical theory of viscous incompressible flow, (1963), Gordon and Breach Science Publishers New York, London · Zbl 0121.42701
[18] Prandtl, L., Über die ausgebildete turbulenz, Z. angew. math. mech., 5, 136-139, (1925) · JFM 51.0666.08
[19] Rosa, R., Some results on the navier – stokes equations in connection with the statistical theory of stationary turbulence. mathematical theory in fluid mechanics (paseky, 2001), Appl. math., 47, 6, 485-516, (2002) · Zbl 1090.76017
[20] Rudin, W., Real and complex analysis, (1987), McGraw-Hill Book Co New York · Zbl 0925.00005
[21] Temam, R., Navier – stokes equations. theory and numerical analysis, (), Reedition in 2001 in the AMS Chelsea series, AMS, Providence · Zbl 0383.35057
[22] Temam, R., ()
[23] Temam, R., ()
[24] Tennekes, H.; Lumley, J.L., A first course in turbulence, (1972), MIT Cambridge, MA · Zbl 0285.76018
[25] Yosida, K., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.