×

Chaos control on the repeated game model in electric power duopoly. (English) Zbl 1143.78373

Summary: The chaos control method combining feedback control with parameter variation is successfully applied to the dynamic repeated Cournot model in electric power duopoly. Stability control of the period-doubling bifurcation and unstable periodic orbits in the chaotic attractor of the discrete non-linear dynamic system is achieved using this method, and the numerical simulation results show that this control method is effective. In practice, by utilizing the sensitivity of the model to disturbance, electric power producers could apply a small perturbation to the chaotic system and induce a large influence on electric output in order to obtain desirable behaviour.

MSC:

78M99 Basic methods for problems in optics and electromagnetic theory
65P20 Numerical chaos
93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[2] Sheng, Z. and Ma, J. 2001.Introduction to the Nonlinear Dynamic System, 296–300. Beijing: Science Press.
[3] Tong P., Acta Physica Sinica 44 pp 169– (1995)
[4] DOI: 10.1016/0375-9601(92)90745-8 · doi:10.1016/0375-9601(92)90745-8
[5] DOI: 10.1016/S0375-9601(97)00004-2 · doi:10.1016/S0375-9601(97)00004-2
[6] DOI: 10.1016/S0375-9601(97)00408-8 · Zbl 1053.93507 · doi:10.1016/S0375-9601(97)00408-8
[7] Qi G., Chaos, Solitons and Fractals 23 pp 1671– (2005) · Zbl 1071.37025 · doi:10.1016/j.chaos.2004.06.054
[8] DOI: 10.1016/j.physleta.2005.06.073 · Zbl 1194.37182 · doi:10.1016/j.physleta.2005.06.073
[9] Luo X., Acta Physica Sinica 52 pp 790– (2003)
[10] DOI: 10.1016/S0378-4754(01)00347-0 · Zbl 1002.91010 · doi:10.1016/S0378-4754(01)00347-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.