zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Word of mouth: Rumor dissemination in social networks. (English) Zbl 1143.91361
Shvartsman, Alexander A. (ed.) et al., Structural information and communication complexity. 15th international colloquium, SIROCCO 2008, Villars-sur-Ollon, Switzerland, June 17--20, 2008. Proceedings. Berlin: Springer (ISBN 978-3-540-69326-0/pbk). Lecture Notes in Computer Science 5058, 185-196 (2008).
Summary: In this paper we examine the diffusion of competing rumors in social networks. Two players select a disjoint subset of nodes as initiators of the rumor propagation, seeking to maximize the number of persuaded nodes. We use concepts of game theory and location theory and model the selection of starting nodes for the rumors as a strategic game. We show that computing the optimal strategy for both the first and the second player is NP-complete, even in a most restricted model. Moreover we prove that determining an approximate solution for the first player is NP-complete as well. We analyze several heuristics and show that-counter-intuitively-being the first to decide is not always an advantage, namely there exist networks where the second player can convince more nodes than the first, regardless of the first player’s decision. For the entire collection see [Zbl 1139.68007].

91D30Social networks
91A43Games involving graphs
Full Text: DOI