[1] |
Hale, T. K.; Infante, E. F.; Tsen, F. S. P.: Stability in linear delay equations. J. math. Anal. appl. 105, 533-555 (1985) · Zbl 0569.34061 |

[2] |
Niamsup, P.; Phat, V. N.: Asymptotic stability of nonlinear control systems described by differential equations with multiple delays. Elect. J. Differential equations 2000, No. 11, 1-17 (2000) · Zbl 0941.93052 |

[3] |
Xu, B. G.: Stability criteria for linear time-invariant systems with multiple delays. J. math. Anal. appl. 282, No. 1, 484-494 (2000) · Zbl 0982.34064 |

[4] |
Hu, T.; Lin, Z.; Qiu, L.: Stabilization of exponentially unstable linear systems with saturating actuators. IEEE trans. Automatic control 46, No. 6, 973-979 (2001) · Zbl 1032.93063 |

[5] |
Richard, P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39, No. 10, 1667-1694 (2003) · Zbl 1145.93302 |

[6] |
Yu, F. M.; Chung, H. Y.; Chen, S. Y.: Fuzzy sliding mode controller design for uncertain time-delayed systems with nonlinear input. Fuzzy sets and systems 140, No. 2, 359-374 (2003) · Zbl 1041.93034 |

[7] |
De La Sen, M.: Sufficiency-type stability and stabilization criteria for linear time-invariant systems with constant point delays. Acta appl. Math. 83, No. 3, 235-236 (2004) · Zbl 1067.34078 |

[8] |
De La Sen, M.; Alastruey, C. F.: Stability results for two classes of linear time-delay and hybrid systems. Eng. comput. 21, No. 7 -- 8, 718-735 (2004) · Zbl 1111.93062 |

[9] |
De La Sen, M.; Luo, N. S.: On the uniform exponential stability of a wide class of linear time-delay systems. J. math. Anal. appl. 289, No. 2, 456-476 (2004) · Zbl 1046.34086 |

[10] |
Liang, S.; Ishitobi, M.: The stability properties of the zeros of sampled models for time-delay systems in fractional order hold case. Dynam. continuous discrete impulsive syst. Series B-appl. Algorithms 11, No. 3, 299-312 (2004) · Zbl 1061.93062 |

[11] |
Wu, H.: Adaptive robust tracking and model following of uncertain dynamical systems with multiple time-delays. IEEE trans. Automat. control 49, No. 4, 611-616 (2004) |

[12] |
Wang, Z.; Hu, H.; Kupper, T.: Robust Hurwitz stability test for linear systems with uncertain commensurate time delays. IEEE trans. Automat. control 49, No. 8, 1389-1393 (2004) |

[13] |
Tarbouriech, S.; Da Silva, J. M. G.: Synthesis of controllers for continuous-time delay systems with saturating controls via lmt’s. IEEE trans. Automat. control 45, No. 1, 105-111 (2000) · Zbl 0978.93062 |

[14] |
S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach, in: Lecture Notes in Control and Information, Series no. 269, Springer-Verlag, Berlin, 2001. |

[15] |
Geromel, J. C.; De Oliveira, M.; Hsu, L.: LMI characterization of structural and robust stability. Linear algebra appl. 285, 69-80 (1998) · Zbl 0949.93064 |

[16] |
Geromel, J. C.; Colaneri, P.: Robust stability of time-varying polytopic systems. Systems control lett. 55, No. 1, 81-85 (2006) · Zbl 1129.93479 |

[17] |
Da Silva, J. G.; Tarbouriech, S.; Garcia, G.: Local stabilization of linear systems under amplitude and rate saturating actuators. IEEE trans. Automat. control 48, No. 5, 842-847 (2003) |

[18] |
Alonso-Quesada, S.; De La Sen, M.: Robust adaptive control of discrete nominally stabilizable plants. Appl. math. Comput. 150, No. 2, 555-583 (2004) · Zbl 1041.93029 |

[19] |
De La Sen, M.: Adaptive stabilization of non-necessarily inversely stable first-order systems by using estimates modification based on testing the Sylvester determinant. Appl. math. Comput. 141, No. 2-3, 261-280 (2003) · Zbl 1029.93055 |

[20] |
M. De la Sen, Parameter dependent Lyapunov functions for robust stability of time varying linear systems under point delays, Appl. Math. Comput., in press, doi:10.1016/j.amc.2005.12.004. · Zbl 1100.93031 |