Ladyzhenskaya, O. A. Construction of bases in spaces of solenoidal vector fields. (English) Zbl 1144.35018 J. Math. Sci., New York 130, No. 4, 4827-4835 (2005); translation from Zap. Nauchn. Semin. POMI 306, 92-106 (2003). The author considers the classical problem \[ \text{div}\,w=\psi\quad\text{in}\;\Omega,\quad w| _{\partial\Omega}=0,\quad \int\limits_\Omega \psi\,dx=0,\tag{1} \] where \(\Omega\subset \mathbb{R}^n\) is a star-shaped bounded domain. It is proved that the problem (1) has a solution given by a certain potential and this solution admits the estimate \[ \|\nabla w\|_{q,\Omega}\leq\beta(n,q,d)\|\psi\|_{q,\Omega}, \] where \(d=\text{dist}\{\partial\Omega;0\}\). On the base of this result a method of construction of fundamental systems in the space \(H(\Omega)\) of solenoidal vector fields is described. Namely, an operator \(P:\,\overset \circ W^1_2(\Omega)\rightarrow H(\Omega)\) is constructed such that if \(\{\varphi_k\}\) is a fundamental system in \(\overset \circ W^1_2(\Omega)\) then \(\{P(\varphi_k)\}\) is a fundamental system in \(H(\Omega)\). Reviewer: Il’ya Sh. Mogilevskij (Tver’) Cited in 2 Documents MSC: 35J25 Boundary value problems for second-order elliptic equations 35B45 A priori estimates in context of PDEs 31B20 Boundary value and inverse problems for harmonic functions in higher dimensions Keywords:solenoidal vector fields; decomposition; fundamental system × Cite Format Result Cite Review PDF Full Text: DOI References: [1] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow [in Russian], Moscow (1961). · Zbl 0131.09402 [2] O. A. Ladyzhenskaya and V. A. Solonnikov, ”Some problems of vector analysis and generalized settings of boundary-value problems for the Navier-Stokes equations,” Zap. Nauchn. Semin. LOMI, 59, 81–116 (1976). · Zbl 0346.35084 [3] L. V. Kapitanskii and K. I. Pileckas, ”Some problems of vector analysis,” Zap. Nauchn. Semin. LOMI, 138, 65–85 (1984). [4] M. E. Bogovskii, ”Solution of some problems of vector analysis with the operators Div and Grad,” in: Trudy S. L. Sobolev’s Seminar, 80 (1980), pp. 5–40. [5] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. VI, Springer-Verlag (1994). · Zbl 0949.35004 [6] B Dacorogna, ”Existence and regularity of solutions of d{\(\omega\)} = f with Dirichlet boundary conditions,” in: I Intern. Math. Series, Vol. 1, Kluwer/Plenum (2002), pp. 67–82. · Zbl 1148.35306 [7] V. I. Smirnov, Course of Higher Mathematics [in Russian]. vol. 5, Moscow (1959). · Zbl 0086.36804 [8] A. P. Calderon and A. Zygmund, ”On singular integrals with variable kernels,” Applicable Analysis, 7, 221–238 (1978). · Zbl 0451.42012 · doi:10.1080/00036817808839193 [9] E. H. Lieb and M. Loss, Analysis [Russian translation], Novosibirsk (1998). · Zbl 0918.26002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.