zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcation for second-order Hamiltonian systems with periodic boundary conditions. (English) Zbl 1144.37025
Summary: Through variational methods, we study nonautonomous systems of second-order ordinary differential equations with periodic boundary conditions. First, we deal with a nonlinear system, depending on a function $u$, and prove that the set of bifurcation points for the solutions of the system is not $\sigma $-compact. Then, we deal with a linear system depending on a real parameter $\lambda >0$ and on a function $u$, and prove that there exists $\lambda ^{\ast }$ such that the set of the functions $u$, such that the system admits nontrivial solutions, contains an accumulation point.

37J45Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods
37J20Bifurcation problems (finite-dimensional Hamiltonian etc. systems)
47J30Variational methods (nonlinear operator equations)
37C60Nonautonomous smooth dynamical systems
34C25Periodic solutions of ODE
Full Text: DOI EuDML
[1] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, vol. 251 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1982. · Zbl 0487.47039
[2] B. Ricceri, “On the singular set of certain potential operators in Hilbert spaces,” in Differential Equations, Chaos and Variational Problems, V. Staicu, Ed., Progress in Nonlinear Differential Equations and Applications, pp. 377-391, Birkhäuser, Boston, Mass, USA, 2007. · Zbl 1223.47055
[3] V. \vDurikovi\vc and M. \vDurikovi\vcová, “On the solutions of nonlinear initial-boundary value problems,” Abstract and Applied Analysis, vol. 2004, no. 5, pp. 407-424, 2004. · Zbl 1063.35017 · doi:10.1155/S1085337504306081
[4] A. K. Ben-Naoum, C. Troestler, and M. Willem, “Existence and multiplicity results for homogeneous second order differential equations,” Journal of Differential Equations, vol. 112, no. 1, pp. 239-249, 1994. · Zbl 0808.58013 · doi:10.1006/jdeq.1994.1103
[5] C.-L. Tang and X.-P. Wu, “Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems,” Journal of Mathematical Analysis and Applications, vol. 275, no. 2, pp. 870-882, 2002. · Zbl 1043.34045 · doi:10.1016/S0022-247X(02)00442-0
[6] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, vol. 74 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1989. · Zbl 0676.58017
[7] R. S. Sadyrkhanov, “On infinite-dimensional features of proper and closed mappings,” Proceedings of the American Mathematical Society, vol. 98, no. 4, pp. 643-648, 1986. · Zbl 0609.58006 · doi:10.2307/2045743
[8] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Springer, New York, NY, USA, 1986. · Zbl 0583.47050
[9] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, vol. 34 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1995. · Zbl 0818.47059
[10] J. Dieudonné, “Sur les homomorphismes d/espaces normés,” Bulletin des Sciences Mathématiques, vol. 67, pp. 72-84, 1943. · Zbl 0028.23301