Cao, Jinde; Yuan, Kun; Ho, Daniel W. C.; Lam, James Global point dissipativity of neural networks with mixed time-varying delays. (English) Zbl 1144.37332 Chaos 16, No. 1, 013105, 9 p. (2006). Editorial remark: No review copy delivered Cited in 29 Documents MSC: 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior PDF BibTeX XML Cite \textit{J. Cao} et al., Chaos 16, No. 1, 013105, 9 p. (2006; Zbl 1144.37332) Full Text: DOI Link References: [1] DOI: 10.1109/81.224300 · Zbl 0800.92044 [2] DOI: 10.1109/81.852931 · Zbl 0964.94008 [3] DOI: 10.1109/TCSI.2004.841574 · Zbl 1374.93285 [4] DOI: 10.1109/72.991431 [5] DOI: 10.1109/81.964422 · Zbl 1006.34070 [6] DOI: 10.1109/81.311541 [7] DOI: 10.1109/TCSI.2002.800841 · Zbl 1368.93462 [8] DOI: 10.1109/TNN.2002.1031957 [9] DOI: 10.1016/S0893-6080(01)00059-4 · Zbl 02022167 [10] DOI: 10.1103/PhysRevA.39.347 [11] DOI: 10.1137/S0036139997321219 · Zbl 0917.34036 [12] DOI: 10.1109/72.655044 [13] DOI: 10.1109/72.329700 [14] DOI: 10.1016/S0893-6080(01)00088-0 · Zbl 02022184 [15] DOI: 10.1109/72.883480 [16] DOI: 10.1109/81.964419 · Zbl 1098.62557 [17] DOI: 10.1016/j.neunet.2003.08.007 · Zbl 1074.68049 [18] DOI: 10.1109/81.298364 · Zbl 0925.92014 [19] DOI: 10.1109/81.983875 · Zbl 1368.93616 [20] DOI: 10.1016/S0893-6080(03)00192-8 · Zbl 1082.68099 [21] DOI: 10.1109/72.279195 [22] DOI: 10.1016/j.physd.2003.12.004 · Zbl 1049.92004 [23] DOI: 10.1016/S0375-9601(03)01113-7 · Zbl 1038.92001 [24] DOI: 10.1016/S0375-9601(03)01106-X · Zbl 1038.92002 [25] DOI: 10.1016/S0893-6080(03)00077-7 · Zbl 1082.68100 [26] DOI: 10.1016/j.physleta.2005.07.025 · Zbl 1345.92017 [27] DOI: 10.1103/PhysRevE.68.016118 [28] DOI: 10.1006/jmaa.1993.1055 · Zbl 0777.34037 [29] DOI: 10.1016/0362-546X(94)00244-C · Zbl 0837.92025 [30] DOI: 10.1109/TAC.2003.811277 · Zbl 1364.93816 [31] DOI: 10.1016/j.physleta.2004.03.038 · Zbl 1161.93335 [32] DOI: 10.1137/1.9781611970777 · Zbl 0816.93004 [33] DOI: 10.1007/978-1-4612-0039-0 [34] Hale J., Asymptotic Behavior of Dissipative Systems (1989) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.