×

zbMATH — the first resource for mathematics

Convergence of Bergman geodesics on \(\text{CP}^1\). (English) Zbl 1144.53089
Let \(L\rightarrow X\) be an ample holomorphic line bundle over a Kähler manifold \(X\). Fix an integer \(N\). For any basis \(\{s_0,s_1,\dots,s_d\}\) of the space of holomorphic sections of \(L^N\), we get the metric \((1/N)\Phi*\omega_{FS}\), where \(\Phi(z) =[s_0(z), s_1(z), \dots, s_d(z)]\in {\mathbb P}^d\) and \(\omega_{FS}\) is the Fubini-Study metric on \({\mathbb P}^d\). The set of such metrics is denoted by \({\mathcal H}_N\), while the space of all \(C^\infty\) Kähler metrics in a fixed Kähler class \([\omega]\) of positive curvature is denoted by \({\mathcal H}\). Then, it is known that the union \(\bigcup_N {\mathcal H}_N\) is \(C^\infty\) dense in \({\mathcal H}\) and that the space \({\mathcal H}\) is an infinite dimensional negatively curved symmetric space relative to a canonically defined Riemannian metric.
This article shows that to any geodesic on \({\mathcal H}\), there is canonically associated a geodesic on \({\mathcal H}_N\) that converges \(C^2\) smoothly to the given geodesic for the case \(X={\mathbb P}^1\); the result is a refinement of \(C^0\) convergence given by D. H. Phong and J. Sturm [Invent. Math. 166, No. 1, 125–149 (2006; Zbl 1120.32026)].

MSC:
53C55 Global differential geometry of Hermitian and Kählerian manifolds
32L05 Holomorphic bundles and generalizations
53C22 Geodesics in global differential geometry
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML arXiv
References:
[1] Abreu, Miguel, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001), 35, Kähler geometry of toric manifolds in symplectic coordinates, 1-24, (2003), Amer. Math. Soc., Providence, RI · Zbl 1044.53051
[2] Arezzo, Claudio; Tian, Gang, Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, 4, 617-630, (2003) · Zbl 1170.32312
[3] Berndtsson, B., Positivity of direct image bundles and convexity on the space of Kähler metrics
[4] Biskup, M.; Borgs, C.; Chayes, J. T.; Kleinwaks, L. J.; Kotecký, R., Partition function zeros at first-order phase transitions: a general analysis, Comm. Math. Phys., 251, 1, 79-131, (2004) · Zbl 1088.82010
[5] Calabi, Eugenio, Seminar on Differential Geometry, 102, Extremal Kähler metrics, 259-290, (1982), Princeton Univ. Press, Princeton, N.J. · Zbl 0487.53057
[6] Chen, X.; Tian, G., Geometry of Kähler metrics and foliations by discs
[7] Chen, Xiuxiong, The space of Kähler metrics, J. Differential Geom., 56, 2, 189-234, (2000) · Zbl 1041.58003
[8] Donaldson, S. K., Some numerical results in complex differential geometry · Zbl 1178.32018
[9] Donaldson, S. K., Northern California Symplectic Geometry Seminar, 196, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, 13-33, (1999), Amer. Math. Soc., Providence, RI · Zbl 0972.53025
[10] Donaldson, S. K., Scalar curvature and projective embeddings. I, J. Differential Geom., 59, 3, 479-522, (2001) · Zbl 1052.32017
[11] Donaldson, S. K., Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom., 1, 2, 171-196, (2002) · Zbl 1035.53102
[12] Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom., 62, 2, 289-349, (2002) · Zbl 1074.53059
[13] Ellis, Richard S., Entropy, large deviations, and statistical mechanics, 271, (1985), Springer-Verlag, New York · Zbl 0566.60097
[14] Fulton, William, Introduction to toric varieties, 131, (1993), Princeton University Press, Princeton, NJ · Zbl 0813.14039
[15] Guan, Daniel, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett., 6, 5-6, 547-555, (1999) · Zbl 0968.53050
[16] Guillemin, Victor, Kähler structures on toric varieties, J. Differential Geom., 40, 2, 285-309, (1994) · Zbl 0813.53042
[17] Hörmander, Lars, The analysis of linear partial differential operators. I, (1990), Springer-Verlag, Berlin · Zbl 1028.35001
[18] Mabuchi, Toshiki, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math., 24, 2, 227-252, (1987) · Zbl 0645.53038
[19] Phong, D. H.; Sturm, Jacob, The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math., 166, 1, 125-149, (2006) · Zbl 1120.32026
[20] Semmes, Stephen, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math., 114, 3, 495-550, (1992) · Zbl 0790.32017
[21] Semmes, Stephen, The Gelfand Mathematical Seminars, 1993-1995, The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces, 225-242, (1996), Birkhäuser Boston, Boston, MA · Zbl 0860.35031
[22] Shiffman, Bernard; Tate, Tatsuya; Zelditch, Steve, Explorations in complex and Riemannian geometry, 332, Harmonic analysis on toric varieties, 267-286, (2003), Amer. Math. Soc., Providence, RI · Zbl 1041.32004
[23] Shiffman, Bernard; Tate, Tatsuya; Zelditch, Steve, Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier (Grenoble), 54, 5, 1497-1546, (2004) · Zbl 1081.35063
[24] Song, Jian, The \(α \)-invariant on toric Fano manifolds, Amer. J. Math., 127, 6, 1247-1259, (2005) · Zbl 1088.32012
[25] Song, Jian; Zelditch, S., Bergman metrics and geodesics in the space of Kähler metrics on toric varieties · Zbl 1282.35428
[26] Tian, Gang, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., 32, 1, 99-130, (1990) · Zbl 0706.53036
[27] Yau, Shing Tung, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31, 3, 339-411, (1978) · Zbl 0369.53059
[28] Yau, Shing-Tung, Chern—a great geometer of the twentieth century, Open problems in geometry, 275-319, (1992), Int. Press, Hong Kong · Zbl 0826.01010
[29] Zelditch, Steve, Bernstein polynomials, Bergman kernels and toric Kähler varieties · Zbl 1178.32019
[30] Zelditch, Steve, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices, 6, 317-331, (1998) · Zbl 0922.58082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.