×

zbMATH — the first resource for mathematics

Classification of simple multigerms of curves in the contact space. (English. Russian original) Zbl 1144.58021
St. Petersbg. Math. J. 18, No. 2, 241-267 (2007); translation from Algebra Anal. 18, No. 2, 80-116 (2006).
In 1999 V. Arnold [Can. J. Math. 51, No. 6, 1123–1134 (1999; Zbl 1031.53110)] described simple singularities of the type \(A_2\) with respect to contact pseudogroups (not every singularity RL-equivalent to \(A_2\) is simple in the contact space).
In the present paper the author achieves a classification of stably simple singularities of the (both irreducible and reducible) curves in the contact complex space up to formal stable contact equivalence. The corresponding symplectic results were achieved previously by V. Arnold [Am. Math. Soc. 194(44), 1–8 (1999; Zbl 0970.57015)] and P. A. Kolgushkin [St. Petersbg. Math. J. 15, No. 1, 103–126 (2004); translation from Algebra Anal. 15, No. 1, 148–183 (2003; Zbl 1045.57018)].
MSC:
58K40 Classification; finite determinacy of map germs
32S05 Local complex singularities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. W. Bruce and T. J. Gaffney, Simple singularities of mappings \?,0\to \?²,0, J. London Math. Soc. (2) 26 (1982), no. 3, 465 – 474. · Zbl 0575.58008 · doi:10.1112/jlms/s2-26.3.465 · doi.org
[2] C. G. Gibson and C. A. Hobbs, Simple singularities of space curves, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 2, 297 – 310. · Zbl 0789.58013 · doi:10.1017/S0305004100075976 · doi.org
[3] V. I. Arnol\(^{\prime}\)d, Simple singularities of curves, Tr. Mat. Inst. Steklova 226 (1999), no. Mat. Fiz. Probl. Kvantovoĭ Teor. Polya, 27 – 35 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(226) (1999), 20 – 28.
[4] P. A. Kolgushkin and R. R. Sadykov, Classification of simple multigerms of curves, Uspekhi Mat. Nauk 56 (2001), no. 6(342), 153 – 154 (Russian); English transl., Russian Math. Surveys 56 (2001), no. 6, 1166 – 1167. · Zbl 1059.14005 · doi:10.1070/RM2001v056n06ABEH000463 · doi.org
[5] P. A. Kolgushkin and R. R. Sadykov, Simple singularities of multigerms of curves, Rev. Mat. Complut. 14 (2001), no. 2, 311 – 344. · Zbl 1072.14501 · doi:10.5209/rev_REMA.2001.v14.n2.16971 · doi.org
[6] V. I. Arnold, First steps of local symplectic algebra, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 1 – 8. · Zbl 0970.57015 · doi:10.1090/trans2/194/01 · doi.org
[7] P. A. Kolgushkin, Classification of simple multigerms of curves in a space endowed with a symplectic structure, Algebra i Analiz 15 (2003), no. 1, 148 – 183 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 1, 103 – 126.
[8] V. I. Arnold, First steps of local contact algebra, Canad. J. Math. 51 (1999), no. 6, 1123 – 1134. Dedicated to H. S. M. Coxeter on the occasion of his 90th birthday. · Zbl 1031.53110 · doi:10.4153/CJM-1999-049-9 · doi.org
[9] Математические методы классической механики., Издат. ”Наука”, Мосцощ, 1974 (Руссиан). В. И. Арнол\(^{\приме}\)д, Матхематицал метходс оф цлассицал мечаницс, 2нд ед., Градуате Тешц ин Матхематицс, вол. 60, Спрингер-Верлаг, Нещ Ыорк, 1989. Транслатед фром тхе Руссиан бы К. Вогтманн анд А. Щеинстеин.
[10] Современные проблемы математики. Фундаментал\(^{\приме}\)ные направления, Том 4, Акад. Наук СССР, Всесоюз. Инст. Научн. и Техн. Информ., Мосцощ, 1985 [ МР0842907 (87ј:58032)]; Транслатион бы Г. Щассерманн; Транслатион едитед бы В. И. Арнол\(^{\приме}\)д анд С. П. Новиков.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.