zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Higher-order multivariate Markov chains and their applications. (English) Zbl 1144.65006
High order multivariate Markov chains are frequently used in modelling, especially for the catagorical data sequences. To reduce the number of the estimated parameters, in some stationary cases, the authors provide a conditional minimum-maximum algorithm associated with the frequency estimation to identify the modelling parameters to meet the practical use. An application to sales demand prediction is discussed.

65C40Computational Markov chains (numerical analysis)
60J22Computational methods in Markov chains
Full Text: DOI
[1] Buzacott, J.; Shanthikumar, J.: Stochastic models of manufacturing systems, (1993) · Zbl 0769.90043
[2] Ching, W.: Iterative methods for queuing and manufacturing systems, (2001) · Zbl 0976.60086
[3] Ching, W.; Fung, E.; Ng, M.: A multivariate Markov chain model for categorical data sequences and its applications in demand predictions, IMA J. Manage. math. 13, 87-199 (2002) · Zbl 1040.62108 · doi:10.1093/imaman/13.3.187
[4] Ching, W.; Fung, E.; Ng, M.: A higher-order Markov model for the newsboy’s problem, J. operat. Res. soc. 54, 291-298 (2003) · Zbl 1171.90539 · doi:10.1057/palgrave.jors.2601491
[5] Ching, W.; Fung, E.; Ng, M.: Higher-order Markov chain models for categorical data sequences, Int. J. Nav. res. Logist. 51, 557-574 (2004) · Zbl 1054.62098 · doi:10.1002/nav.20017
[6] Ching, W.; Ng, M.: Advances in data mining and modeling, (2003)
[7] Ching, W.; Yuen, W.; Loh, A.: An inventory model with returns and lateral transshipments, J. operat. Res. soc. 54, 636-641 (2003) · Zbl 1095.90503 · doi:10.1057/palgrave.jors.2601521
[8] Ching, W.; Fung, E.; Ng, M.; Akutsu, T.: On construction of stochastic genetic networks based on gene expression sequences, Int. J. Neural syst. 15, 297-310 (2005)
[9] Chvátal, V.: Linear programming, (1983) · Zbl 0537.90067
[10] Fang, S.; Puthenpura, S.: Linear optimization and extension, (1993) · Zbl 0799.90080
[11] Fleischmann, M.: Quantitative models for reverse, logistics, Lecture notes in economics and mathematical system 501 (2001)
[12] Horn, R.; Johnson, C.: Matrix analysis, (1985) · Zbl 0576.15001
[13] Macdonald, I.; Zucchini, W.: Hidden Markov and other models for discrete-valued time series, (1997) · Zbl 0868.60036
[14] Nahmias, S.: Production and operation analysis, (1997)
[15] Raftery, A.: A model for high-order Markov chains, J.R. statist. Soc. B 47, 528-539 (1985) · Zbl 0593.62091
[16] Sharma, O.: Markovian queues, (1995)
[17] Siu, T.; Ching, W.; Ng, M.; Fung, E.: On multivariate credibility approach for portfolio credit risk measurement, Quantitative finance 5, 543-556 (2005) · Zbl 1134.91485