Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi Solution of the fully fuzzy linear systems using iterative techniques. (English) Zbl 1144.65021 Chaos Solitons Fractals 34, No. 2, 316-336 (2007). The authors are concerned with the iterative solution of fully fuzzy linear systems. In this sense they consider classical iterative methods, as Jacobi, Gauss-Seidel, successive overrelaxation as well as some methods from nonlinear programming. In all cases they present numerical experiments related to stability and error analysis of the corresponding algorithms. Reviewer: Constantin Popa (Constanţa) Cited in 39 Documents MSC: 65F10 Iterative numerical methods for linear systems 08A72 Fuzzy algebraic structures Keywords:fully fuzzy linear systems; iterative solution; stability; error analysis; Jacobi method; Gauss-Seidel method; successive overrelaxation Software:mctoolbox PDF BibTeX XML Cite \textit{M. Dehghan} et al., Chaos Solitons Fractals 34, No. 2, 316--336 (2007; Zbl 1144.65021) Full Text: DOI References: [1] Abbod, M. F.; von Keyserlingk, D. G.; Linkens, D. A.; Mahfouf, M., Survey of utilisation of fuzzy technology in medicine and healthcare, Fuzzy Sets Syst, 120, 331-349 (2001) [2] Avdelas, G.; Hadjidimos, A., Optimum accelerated overrelaxation method in a special case, Math Comput, 36, 183-187 (1981) · Zbl 0463.65020 [3] Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M., Nonlinear programming, theory and algorithms (1993), John Wiley and Sons: John Wiley and Sons New York · Zbl 0774.90075 [4] Buckley, J. J.; Qu, Y., Solving systems of linear fuzzy equations, Fuzzy Sets Syst, 43, 33-43 (1991) · Zbl 0741.65023 [5] Caldas, M.; Jafari, S., \(h\)-Compact fuzzy topological spaces, Chaos, Solitons & Fractals, 25, 229-232 (2005) · Zbl 1070.54501 [6] Datta, B. N., Numerical linear algebra and applications (1995), Brooks/Cole Pub.: Brooks/Cole Pub. California [8] DeMarr, R., Nonnegative matrices with nonnegative inverses, Proc Amer Math Soc, 35, 307-308 (1972) · Zbl 0257.15002 [9] Dubois, D.; Prade, H., Operations on fuzzy numbers, Int J Syst Sci, 9, 613-626 (1978) · Zbl 0383.94045 [10] Dubois, D.; Prade, H., Systems of linear fuzzy constraints, Fuzzy Sets Syst, 3, 37-48 (1980) · Zbl 0425.94029 [11] Dubois, D.; Prade, H., Fuzzy sets and systems: theory and applications (1980), Academic Press: Academic Press New York · Zbl 0444.94049 [12] El Naschie, M. S., From experimental quantum optics to quantum gravity via a fuzzy Kahler manifold, Chaos, Solitons & Fractals, 25, 969-977 (2005) · Zbl 1070.81118 [13] Evans, D. J., The extrapolated modified Aitken iteration method for solving elliptic difference equations, Comput J, 6, 193-201 (1963) · Zbl 0119.33404 [14] Friedman, M.; Ming, M.; Kandel, A., Fuzzy linear systems, Fuzzy Sets Syst, 96, 201-209 (1998) · Zbl 0929.15004 [15] Giachetti, R. E.; Young, R. E., Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation, Fuzzy Sets Syst, 91, 1-13 (1997) · Zbl 0915.04003 [16] Gvozdik, A. A., Solution of fuzzy equations, UDC, 518.9, 60-67 (1985) · Zbl 0593.65031 [17] Hadjidimos, A., Accelerated overrelaxation method, Math Comput, 32, 149-157 (1978) · Zbl 0382.65015 [18] Hageman, L. A.; Young, D. M., Applied iterative methods (1981), Academic Press: Academic Press New York · Zbl 0459.65014 [19] Hansen, E., Interval arithmetic in matrix computations, Part I, SIAM J Numer Anal, 2, 308-320 (1965) · Zbl 0135.37303 [20] Hansen, E., Interval arithmetic in matrix computations, Part II, SIAM J Numer Anal, 4, 1-9 (1967) · Zbl 0209.46601 [21] Hansen, E. R., Interval forms of Newton’s method, Computing, 20, 153-163 (1978) · Zbl 0384.65019 [22] Hansel, E.; Walster, W. G.; Hansen, E. R.; Walster, G. W., Global optimization using interval analysis (2003), Marcel Dekker: Marcel Dekker USA [23] Higham, N. J., Accuracy and stability of numerical algorithms (1996), SIAM: SIAM Philadelphia · Zbl 0847.65010 [25] Kreinovich, V.; Lakeyev, A. V.; Rohn, J.; Kahl, P. T., Computational complexity and feasibility of data processing and interval computations. Computational complexity and feasibility of data processing and interval computations, Series: Appl Optimiz, 10 (1998), Springer · Zbl 0945.68077 [26] Madalena Martins, M., On an accelerated overrelaxation iterative method for linear systems with strictly diagonally dominant matrix, Math Comput, 152, 1269-1273 (1980) · Zbl 0463.65021 [27] Missirils, N. M.; Evans, D. J., On the convergence of some generalized preconditioned iterative methods, SIAM J Numer Anal, 18, 591-596 (1981) · Zbl 0464.65018 [28] Rao, S. S.; Chen, L., Numerical solution of fuzzy linear equations in engineering analysis, Int J Numer Methods Eng, 42, 829-846 (1998) · Zbl 0911.73077 [29] Stefanini, L.; Sorini, L.; Letizia Guerra, M., Simulation of fuzzy dynamical systems using the LU-representation of fuzzy numbers, Chaos, Solitons & Fractals, 29, 638-652 (2006) · Zbl 1142.37372 [30] Wagenknecht, M.; Hampel, R.; Schneider, V., Computational aspects of fuzzy arithmetics based on Archimedean t-norms, Fuzzy Sets Syst, 123, 49-62 (2001) · Zbl 0997.65071 [31] Young, D. M., Iterative solution of large linear systems (1971), Academic Press: Academic Press New York · Zbl 0204.48102 [32] Zadeh, L. A., Fuzzy sets, Inform Control, 8, 338-353 (1965) · Zbl 0139.24606 [33] Zhang, H.; Liao, X.; Yu, J., Fuzzy modeling and synchronization of hyperchaotic systems, Chaos, Solitons & Fractals, 26, 835-843 (2005) · Zbl 1093.93540 [34] Zhao, R.; Govind, R., Solutions of algebraic equations involving generalized fuzzy numbers, Inform Sci, 56, 199-243 (1991) · Zbl 0726.65048 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.