zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solution of the fully fuzzy linear systems using iterative techniques. (English) Zbl 1144.65021
The authors are concerned with the iterative solution of fully fuzzy linear systems. In this sense they consider classical iterative methods, as Jacobi, Gauss-Seidel, successive overrelaxation as well as some methods from nonlinear programming. In all cases they present numerical experiments related to stability and error analysis of the corresponding algorithms.

65F10Iterative methods for linear systems
08A72Fuzzy algebraic structures
Full Text: DOI
[1] Abbod, M. F.; Von Keyserlingk, D. G.; Linkens, D. A.; Mahfouf, M.: Survey of utilisation of fuzzy technology in medicine and healthcare. Fuzzy sets syst 120, 331-349 (2001)
[2] Avdelas, G.; Hadjidimos, A.: Optimum accelerated overrelaxation method in a special case. Math comput 36, 183-187 (1981) · Zbl 0463.65020
[3] Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M.: Nonlinear programming, theory and algorithms. (1993) · Zbl 0774.90075
[4] Buckley, J. J.; Qu, Y.: Solving systems of linear fuzzy equations. Fuzzy sets syst 43, 33-43 (1991) · Zbl 0741.65023
[5] Caldas, M.; Jafari, S.: H-compact fuzzy topological spaces. Chaos, solitons & fractals 25, 229-232 (2005) · Zbl 1070.54501
[6] Datta, B. N.: Numerical linear algebra and applications. (1995) · Zbl 1182.65001
[7] Dehghan M, Hashemi B, Ghatee M. Computational methods for solving fully fuzzy linear systems. Appl Math Comput, in press. · Zbl 1101.65040
[8] Demarr, R.: Nonnegative matrices with nonnegative inverses. Proc amer math soc 35, 307-308 (1972) · Zbl 0257.15002
[9] Dubois, D.; Prade, H.: Operations on fuzzy numbers. Int J syst sci 9, 613-626 (1978) · Zbl 0383.94045
[10] Dubois, D.; Prade, H.: Systems of linear fuzzy constraints. Fuzzy sets syst 3, 37-48 (1980) · Zbl 0425.94029
[11] Dubois, D.; Prade, H.: Fuzzy sets and systems: theory and applications. (1980) · Zbl 0444.94049
[12] El Naschie, M. S.: From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold. Chaos, solitons & fractals 25, 969-977 (2005) · Zbl 1070.81118
[13] Evans, D. J.: The extrapolated modified aitken iteration method for solving elliptic difference equations. Comput J 6, 193-201 (1963) · Zbl 0119.33404
[14] Friedman, M.; Ming, M.; Kandel, A.: Fuzzy linear systems. Fuzzy sets syst 96, 201-209 (1998) · Zbl 0929.15004
[15] Giachetti, R. E.; Young, R. E.: Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation. Fuzzy sets syst 91, 1-13 (1997) · Zbl 0915.04003
[16] Gvozdik, A. A.: Solution of fuzzy equations. Udc 518.9, 60-67 (1985) · Zbl 0593.65031
[17] Hadjidimos, A.: Accelerated overrelaxation method. Math comput 32, 149-157 (1978) · Zbl 0382.65015
[18] Hageman, L. A.; Young, D. M.: Applied iterative methods. (1981) · Zbl 0459.65014
[19] Hansen, E.: Interval arithmetic in matrix computations, part I. SIAM J numer anal 2, 308-320 (1965) · Zbl 0135.37303
[20] Hansen, E.: Interval arithmetic in matrix computations, part II. SIAM J numer anal 4, 1-9 (1967) · Zbl 0209.46601
[21] Hansen, E. R.: Interval forms of Newton’s method. Computing 20, 153-163 (1978) · Zbl 0384.65019
[22] Hansel, E.; Walster, W. G.; Hansen, E. R.; Walster, G. W.: Global optimization using interval analysis. (2003) · Zbl 1255.65098
[23] Higham, N. J.: Accuracy and stability of numerical algorithms. (1996) · Zbl 0847.65010
[24] Kawaguchi MF, Da-Te T. A calculation method for solving fuzzy arithmetic equations with triangular norms. In: 2nd IEEE int conf on fuzzy systems, San Francisco, USA, 1993.
[25] Kreinovich, V.; Lakeyev, A. V.; Rohn, J.; Kahl, P. T.: Computational complexity and feasibility of data processing and interval computations. Series: appl optimiz 10 (1998) · Zbl 0945.68077
[26] Martins, M. Madalena: On an accelerated overrelaxation iterative method for linear systems with strictly diagonally dominant matrix. Math comput 152, 1269-1273 (1980) · Zbl 0463.65021
[27] Missirils, N. M.; Evans, D. J.: On the convergence of some generalized preconditioned iterative methods. SIAM J numer anal 18, 591-596 (1981) · Zbl 0464.65018
[28] Rao, S. S.; Chen, L.: Numerical solution of fuzzy linear equations in engineering analysis. Int J numer methods eng 42, 829-846 (1998) · Zbl 0911.73077
[29] Stefanini, L.; Sorini, L.; Guerra, M. Letizia: Simulation of fuzzy dynamical systems using the Lu-representation of fuzzy numbers. Chaos, solitons & fractals 29, 638-652 (2006) · Zbl 1142.37372
[30] Wagenknecht, M.; Hampel, R.; Schneider, V.: Computational aspects of fuzzy arithmetics based on Archimedean t-norms. Fuzzy sets syst 123, 49-62 (2001) · Zbl 0997.65071
[31] Young, D. M.: Iterative solution of large linear systems. (1971) · Zbl 0231.65034
[32] Zadeh, L. A.: Fuzzy sets. Inform control 8, 338-353 (1965) · Zbl 0139.24606
[33] Zhang, H.; Liao, X.; Yu, J.: Fuzzy modeling and synchronization of hyperchaotic systems. Chaos, solitons & fractals 26, 835-843 (2005) · Zbl 1093.93540
[34] Zhao, R.; Govind, R.: Solutions of algebraic equations involving generalized fuzzy numbers. Inform sci 56, 199-243 (1991) · Zbl 0726.65048