zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM. (English) Zbl 1144.74043
Summary: We present a comparative study on finite elements for capturing strong discontinuities by means of elemental (E-FEM) or nodal enrichments (X-FEM). Based on the same constitutive model (continuum damage) and linear elements (triangles and tetrahedra), optimized implementations of both types of enrichments in the same nonlinear code are tested for a representative set of 2D and 3D crack propagation examples. It is shown that both methods provide the same qualitative and quantitative results for enough refined meshes. For the performed tests, E-FEM exhibited, in general, a higher accuracy, mostly for coarse meshes, whereas, convergence rate with mesh refinement, which is super-linear, showed slightly higher for X-FEM. As for the computational costs for single crack modelling X-FEM showed, depending on the case, from 1.1 to about 2.5 times more expensive than E-FEM. For multiple cracks, the computational cost of E-FEM keeps constant, whereas the cost associated to X-FEM increases linearly with the number of modelled cracks.

74S05Finite element methods in solid mechanics
74R10Brittle fracture
Full Text: DOI
[1] Alfaiate, J.: New developments in the study of strong embedded discontinuities infinite elements. Adv. fract. Damage mech. 251 -- 252, 109-114 (2003)
[2] Armero, F.; Garikipati, K.: An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int. J. Solids struct. 33, 2863-2885 (1996) · Zbl 0924.73084
[3] Bazant, Z.; Cedolin, L.: Fracture mechanics of reinforced concrete. J. eng. Mech. div. ASCE, 1287-1305 (1980)
[4] Belytschko, T.; Chen, H.; Xu, J. X.; Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. methods engrg. 58, 1873-1905 (2003) · Zbl 1032.74662
[5] Belytschko, T.; Moes, N.; Usui, S.; Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. methods engrg. 50, 993-1013 (2001) · Zbl 0981.74062
[6] C. Feist, G. Hofstetter, Computational aspects of concrete fracture simulations in the framework of the SDA. Presented at Fracture Mechanics of Concrete Structures FRAMCOS 2004, Vale, Co, USA, 2004.
[7] Garikipati, K.; Hughes, T. J. R.: A study of strain-localization in a multiple scale framework. The one dimensional problem. Comput. methods appl. Mech. engrg. 159, 193-222 (1998) · Zbl 0961.74009
[8] Gasser, T. C.; Holzapfel, G. A.: Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput. methods appl. Mech. engrg. 192, 5059-5098 (2003) · Zbl 1088.74541
[9] Gasser, T. C.; Holzapfel, G. A.: Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput. methods appl. Mech. engrg. 194, 2859-2896 (2005) · Zbl 1176.74180
[10] Jirasek, M.: Comparative study on finite elements with embedded discontinuities. Comput. methods appl. Mech. engrg. 188, 307-330 (2000) · Zbl 1166.74427
[11] A.S. Kobayashi, M.N. Hawkins, D.B. Barker, B.M. Liaw, Fracture process zone of concrete, in: S.S.P. (Ed.), Application of Fracture Mechanics to Cementitious Composites, Marinus Nujhoff Publ., Dordrecht, 1985, pp. 25 -- 50.
[12] P. Laborde, J. Pommier, Y. Renard, M. Salaün, High order extended finite element method for cracked domains. Presented at Computational Plasticity VIII: Fundamentals and Applications, Barcelona, Spain, 2005. · Zbl 1181.74136
[13] Larsson, R.; Runesson, K.; Ottosen, N. S.: Discontinuous displacement approximation for capturing plastic localization. Int. J. Numer. methods engrg. 36, 2087-2105 (1993) · Zbl 0794.73074
[14] Liao, K.; Reifsnider, K. L.: A tensile strength model for unidirectional fiber-reinforced brittle matrix composite. Int. J. Fract. 106, 95-115 (2000)
[15] Cervera, M.; Agelet, C.; Chiumenti, M.: COMET: A multipurpose finite element code for numerical analysis in solid mechanics. (2001)
[16] Mariani, S.; Perego, U.: Extended finite element method for quasi-brittle fracture. Int. J. Numer. methods engrg. 58, 103-126 (2003) · Zbl 1032.74673
[17] N. Moës, N. Sukumar, B. Moran, T. Belytschko, An extended finite element method (X-FEM) for two and three-dimensional crack modelling. Presented at ECCOMAS 2000, Barcelona, Spain, 2000. · Zbl 0963.74067
[18] Mosler, J.; Meschke, G.: 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations. Int. J. Numer. methods engrg. 57, 1553-1576 (2003) · Zbl 1062.74623
[19] Mosler, J.; Meschke, G.: Embedded crack vs. Smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias. Comput. methods appl. Mech. engrg. 193, 3351-3375 (2004) · Zbl 1060.74606
[20] Oliver, J.: Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. 2. Numerical simulation. Int. J. Numer. methods engrg. 39, 3601-3623 (1996) · Zbl 0888.73018
[21] Oliver, J.: On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations. Int. J. Solids struct. 37, 7207-7229 (2000) · Zbl 0994.74004
[22] Oliver, J.; Huespe, A. E.: Continuum approach to material failure in strong discontinuity settings. Comput. methods appl. Mech. engrg. 193, 3195-3220 (2004) · Zbl 1060.74507
[23] Oliver, J.; Huespe, A. E.: Theoretical and computational issues in modelling material failure in strong discontinuity scenarios. Comput. methods appl. Mech. engrg. 193, 2987-3014 (2004) · Zbl 1067.74505
[24] J. Oliver, A.E. Huespe, S. Blanco, D.L. Linero, Stability and robustness issues in numerical modeling of material failure in the strong discontinuity approach, Comput. Methods Appl. Mech. Engrg. accepted for publication. · Zbl 05073260
[25] J. Oliver, A.E. Huespe, M.D.G. Pulido, S. Blanco, Recent advances in computational modelling of material failure. Presented at 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), University of Jyväskylä, Jyväskylä, Finland, 2004.
[26] J. Oliver, A.E. Huespe, M.D.G. Pulido, S. Blanco, D. Linero, New developments in computational material failure mechanics. Presented at Sixth World Congress on Computational Mechanics (WCCM VI), Beijing, PR China, 2004.
[27] Oliver, J.; Huespe, A. E.; Pulido, M. D. G.; Chaves, E.: From continuum mechanics to fracture mechanics: the strong discontinuity approach. Engrg. fract. Mech. 69, 113-136 (2002)
[28] Oliver, J.; Huespe, A. E.; Samaniego, E.: A study on finite elements for capturing strong discontinuities. Int. J. Numer. methods engrg. 56, 2135-2161 (2003) · Zbl 1038.74645
[29] Borja, R. L.; Regueiro, R. A.: A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation. Comput. methods appl. Mech. engrg., 1529-1549 (2000) · Zbl 1003.74074
[30] Rots, J. G.: Computational modeling of concrete fractures. (1988)
[31] Runesson, K.; Mroz, Z.: A note on nonassociated plastic flow rules. Int. J. Plast. 5, 639-658 (1989) · Zbl 0697.73025
[32] Simo, J.; Oliver, J.; Armero, F.: An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. mech. 12, 277-296 (1993) · Zbl 0783.73024
[33] Simone, A.: Partition of unity-based discontinuous elements for interface phenomena: computational issues. Commun. numer. Methods engrg. 20, 465-478 (2004) · Zbl 1058.74082
[34] Spencer, B. W.; Shing, P. B.: Rigid-plastic interface for an embedded crack. Int. J. Numer. methods engrg. 56, 2163-2182 (2003) · Zbl 1038.74650
[35] Wells, G. N.; Sluys, L. J.: A new method for modelling cohesive cracks using finite elements. Int. J. Numer. methods engrg. 50, 2667-2682 (2001) · Zbl 1013.74074
[36] Willam, K.; Sobh, N.: Bifurcation analysis of tangential material operators. Transient/dynamic analysis and constitutive laws for engineering materials 2, C4/1-C4/13 (1987)
[37] Zi, G.; Belytschko, T.: New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. methods engrg. 57, 2221-2240 (2003) · Zbl 1062.74633