zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Harmonic bilocal fields generated by globally conformal invariant scalar fields. (English) Zbl 1144.81028
Summary: The twist two contribution in the operator product expansion of $\phi_{1} (x_{1})\phi_{2}(x_{2})$ for a pair of globally conformal invariant, scalar fields of equal scaling dimension $d$ in four space-time dimensions is a field $V_{1} (x_{1}, x_{2})$ which is harmonic in both variables. It is demonstrated that the Huygens bilocality of $V_{1}$ can be equivalently characterized by a “single-pole property” concerning the pole structure of the (rational) correlation functions involving the product $\phi_{1}(x_{1})\phi_{2}(x_{2})$. This property is established for the dimension $d = 2$ of $\phi_{1}, \phi_{2}$. As an application we prove that any system of GCI scalar fields of conformal dimension 2 (in four space-time dimensions) can be presented as a (possibly infinite) superposition of products of free massless fields.

81T40Two-dimensional field theories, conformal field theories, etc.
Full Text: DOI arXiv
[1] Bakalov B. and Nikolov N.M. (2006). Jacobi identity for vertex algebras in higher dimensions. J. Math. Phys. 47: 053505 · Zbl 1111.17014 · doi:10.1063/1.2197687
[2] Bakalov B., Nikolov N.M., Rehren K.-H. and Todorov I. (2007). Unitary positive-energy representations of scalar bilocal quantum fields. Commun. Math. Phys. 271: 223--246 · Zbl 1156.81422 · doi:10.1007/s00220-006-0182-2
[3] Bargmann V. and Todorov I.T. (1977). Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of SO(N). J. Math. Phys. 18: 1141--1148 · Zbl 0364.46016 · doi:10.1063/1.523383
[4] Borchers H.-J. (1960). Über die Mannigfaltigkeit der interpolierenden Felder zu einer interpolierenden S-Matrix. N. Cim. 15: 784--794 · Zbl 0093.44002 · doi:10.1007/BF02732693
[5] Buchholz D., Mack G. and Todorov I.T. (1988). The current algebra on the circle as a germ of local field theories. Nucl. Phys. B (Proc. Suppl.) 5: 20--56 · Zbl 0958.22500 · doi:10.1016/0920-5632(88)90367-2
[6] Dobrev, V.K. Mack, G., Petkova, V.B., Petrova, S.G., Todorov, I.T.: Harmonic Analysis of the n-Dimensional Lorentz Group and Its Applications to Conformal Quantum Field Theory. Berlin et al.: Springer, 1977 · Zbl 0407.43010
[7] Dolan F.A. and Osborn H. (2001). Conformal four point functions and operator product expansion. Nucl. Phys. B 599: 459--496 · Zbl 1097.81734 · doi:10.1016/S0550-3213(01)00013-X
[8] Dütsch M. and Rehren K.-H. (2003). Generalized free fields and the AdS-CFT correspondence. Ann. H. Poincaré 4: 613--635 · Zbl 1038.81051 · doi:10.1007/s00023-003-0141-9
[9] Dunford, N., Schwartz, J.: Linear Operators, Part 2. Spectral Theory. Self Adjoint Operators in Hilbert Space. N.Y.-London: Interscience Publishers, 1963 · Zbl 0128.34803
[10] Mack G. (1977). All unitary representations of the conformal group SU(2,2) with positive energy. Commun. Math. Phys. 55: 1--28 · Zbl 0352.22012 · doi:10.1007/BF01613145
[11] Nikolov N.M., Rehren K.-H. and Todorov I.T. (2005). Partial wave expansion and Wightman positivity in conformal field theory. Nucl. Phys. B 722: 266--296 · Zbl 1128.81320 · doi:10.1016/j.nuclphysb.2005.06.006
[12] Nikolov N.M., Stanev Ya.S. and Todorov I.T. (2002). Four dimensional CFT models with rational correlation functions. J. Phys. A 35: 2985--3007 · Zbl 1041.81097 · doi:10.1088/0305-4470/35/12/319
[13] Nikolov N.M., Stanev Ya.S. and Todorov I.T. (2003). Globally conformal invariant gauge field theory with rational correlation functions. Nucl. Phys. B 670: 373--400 · Zbl 1058.81054 · doi:10.1016/j.nuclphysb.2003.08.006
[14] Nikolov N.M. and Todorov I.T. (2001). Rationality of conformally invariant local correlation functions on compactified Minkowsi space. Commun. Math. Phys. 218: 417--436 · Zbl 0985.81055 · doi:10.1007/s002200100414
[15] Nikolov, N.M., Rehren, K.-H., Todorov, I.: Pole structure and biharmonic fields in conformal QFT in four dimensions. In: Dobrev, V. (ed.) LT7: Lie Theory and its Applications in Physics, Proceedings Varna 2007, Sofia, Heron Press (2008). e-print arXiv:0711.0628, to appear
[16] Schroer B. and Swieca J.A. (1974). Conformal transformations of quantized fields. Phys. Rev. D 10: 480--485 · doi:10.1103/PhysRevD.10.480
[17] Schroer B., Swieca J.A. and Völkel A.H. (1975). Global operator expansions in conformally invariant relativistic quantum field theory. Phys. Rev. D 11: 1509--1520 · doi:10.1103/PhysRevD.11.1509
[18] Streater R.F., Wightman A.S.: PCT, Spin and Statistics, and All That. Benjamin, 1964; Princeton, N.J.: Princeton Univ. Press, 2000 · Zbl 0135.44305
[19] Todorov I. (2006). Vertex algebras and conformal field theory models in four dimensions. Fortschr. Phys. 54: 496--504 · Zbl 1093.81054 · doi:10.1002/prop.200510295