Quasi-stationary regime of a branching random walk in presence of an absorbing wall. (English) Zbl 1144.82321

Summary: A branching random walk in presence of an absorbing wall moving at a constant velocity \(v\) undergoes a phase transition as the velocity \(v\) of the wall varies. Below the critical velocity \(v_{c}\), the population has a non-zero survival probability and when the population survives its size grows exponentially. We investigate the histories of the population conditioned on having a single survivor at some final time \(T\). We study the quasi-stationary regime for \(v < v_{c}\) when \(T\) is large. To do so, one can construct a modified stochastic process which is equivalent to the original process conditioned on having a single survivor at final time \(T\). We then use this construction to show that the properties of the quasi-stationary regime are universal when \(v \rightarrow v_{c}\). We also solve exactly a simple version of the problem, the exponential model, for which the study of the quasi-stationary regime can be reduced to the analysis of a single one-dimensional map.


82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
92D25 Population dynamics (general)
Full Text: DOI arXiv


[1] Antal, T., Blagoev, K.B., Trugman, S.A., Redner, S.: Aging and immortality in a cell proliferation model. J. Theor. Biol. 248, 411–417 (2007) · doi:10.1016/j.jtbi.2007.06.009
[2] Assaf, M., Meerson, B.: Spectral theory of metastability and extinction in birth-death systems. Phys. Rev. Lett. 97, 200602 (2006) · doi:10.1103/PhysRevLett.97.200602
[3] Berestycki, H., Hamel, F., Nadirashvili, N.: Propagation speed for reaction-diffusion equations in general domains. C. R. Acad. Sci. Paris 339, 163–168 (2004) · Zbl 1049.35100
[4] Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I–Species persistence. J. Math. Biol. 51, 75–113 (2005) · Zbl 1066.92047 · doi:10.1007/s00285-004-0313-3
[5] Bramson, M.: Convergence of solutions of the Kolmogorov equation to traveling waves. Mem. Am. Math. Soc. 44, 1–190 (1983) · Zbl 0517.60083
[6] Brunet, É., Derrida, B.: Exactly soluble noisy traveling-wave equation appearing in the problem of directed polymers in a random medium. Phys. Rev. E 70, 016106 (2004) · doi:10.1103/PhysRevE.70.016106
[7] Brunet, É., Derrida, B., Mueller, A., Munier, S.: Noisy traveling waves: Effect of selection on genealogies. Europhys. Lett. 76, 1–7 (2006) · doi:10.1209/epl/i2006-10224-4
[8] Brunet, É., Derrida, B., Mueller, A., Munier, S.: Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. Phys. Rev. E 73, 056126 (2006) · doi:10.1103/PhysRevE.73.056126
[9] Brunet, É., Derrida, B., Mueller, A., Munier, S.: Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. Phys. Rev. E 76, 041104 (2007). cond-mat:0704.3389 · doi:10.1103/PhysRevE.76.041104
[10] Cattiaux, P., Collet, P., Lambert, A., Martinez, S., Méléard, S., San Martin, J.: Quasi-stationary distributions and diffusion models in population dynamics. http://arxiv.org/abs/math/0703781 (2007)
[11] de Oliveira, M.M., Dickman, R.: How to simulate the quasistationary state. Phys. Rev. E 71, 016129 (2005) · doi:10.1103/PhysRevE.71.055201
[12] Derrida, B., Simon, D.: The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78, 60006 (2007) · Zbl 1244.82071 · doi:10.1209/0295-5075/78/60006
[13] Dickman, R., Vidigal, R.: Quasi-stationary distributions for stochastic processes with an absorbing state. J. Phys. A Math. Gen. 35, 1147–1166 (2002) · Zbl 0992.60098 · doi:10.1088/0305-4470/35/5/303
[14] Doering, C.R., Mueller, C., Smereka, P.: Interacting particles, the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality. Phys. A 325, 243–259 (2003) · Zbl 1025.60027 · doi:10.1016/S0378-4371(03)00203-6
[15] Domany, E., Kinzel, W.: Directed percolation in two dimensions: numerical analysis and an exact solution. Phys. Rev. Lett. 47, 5–8 (1981) · Zbl 1174.82315 · doi:10.1103/PhysRevLett.47.5
[16] Dubertret, B., Liu, S., Ouyang, Q., Libchaber, A.: Dynamics of DNA-protein interaction deduced from in vitro DNA evolution. Phys. Rev. Lett. 86, 6022–6025 (2001) · doi:10.1103/PhysRevLett.86.6022
[17] Escudero, C.: Field theory of propagating reaction-diffusion fronts. Phys. Rev. E 70, 041102 (2004) · doi:10.1103/PhysRevE.70.041102
[18] Ferrari, P.A., Martinez, S., San Martín, J.: Phase transition for absorbed Brownian motion with drift. J. Stat. Phys. 86, 213–231 (1997) · Zbl 0920.60094 · doi:10.1007/BF02180205
[19] Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355 (1937)
[20] Hallatschek, O., Nelson, D.: Gene surfing in expanding populations. Theor. Popul. Biol. 73, 158 (2008). arXiv:q-bio/0703040 · Zbl 1202.92058 · doi:10.1016/j.tpb.2007.08.008
[21] Hardy, R., Harris, S.: A new formulation of the spine approach to branching diffusions. Mathematics Preprint, University of Bath, no. 0404 (2004)
[22] Harris, J., Harris, S.: Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12, 81–92 (2007) · Zbl 1132.60059
[23] Harris, T.: The Theory of Branching Processes. Springer, Berlin (1962) · Zbl 0121.07202
[24] Hinrichsen, H.: Nonequilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815 (2000) · doi:10.1080/00018730050198152
[25] Iancu, E., Mueller, A., Munier, S.: Universal behavior of QCD amplitudes at high energy from general tools of statistical physics. Phys. Lett. B 606, 342–350 (2005) · doi:10.1016/j.physletb.2004.12.009
[26] Kang, K., Redner, S.: Fluctuation-dominated kinetics in diffusion-controlled reactions. Phys. Rev. A 32, 435–447 (1985) · doi:10.1103/PhysRevA.32.435
[27] Kesten, H., Ney, P., Spitzer, F.: The Galton-Watson process with mean one and finite variance. Theory Probab. Appl. 11, 513–540 (1966) · Zbl 0158.35202 · doi:10.1137/1111059
[28] Khalili-Françon, E.: Processus de Galton-Watson. Lect. Notes Math. 321, 122–135 (1973) · Zbl 0278.60056 · doi:10.1007/BFb0071401
[29] Kloster, M.: Analysis of evolution through competitive selection. Phys. Rev. Lett. 95, 168701 (2005) · doi:10.1103/PhysRevLett.95.168701
[30] Marquet, C., Peschanski, R., Soyez, G.: Traveling waves and geometric scaling at nonzero momentum transfer. Nucl. Phys. A 756, 399–418 (2005) · doi:10.1016/j.nuclphysa.2005.03.089
[31] McKean, H.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28, 323–331 (1975) · Zbl 0316.35053 · doi:10.1002/cpa.3160280302
[32] Moro, E.: Hybrid method for simulating front propagation in reaction-diffusion systems. Phys. Rev. E 69, 060101(R) (2004) · doi:10.1103/PhysRevE.69.060101
[33] Mueller, C., Mytnik, L., Quastel, J.: The asymptotic speed of a random traveling wave. Preprint (2008) · Zbl 1155.60325
[34] Mueller, C., Sowers, R.: Random traveling waves for the KPP equation with noise. J. Funct. Anal. 128, 439–498 (1995) · Zbl 0820.60039 · doi:10.1006/jfan.1995.1038
[35] Munier, S., Peschanski, R.: Geometric scaling as traveling waves. Phys. Rev. Lett. 91, 232001 (2003) · doi:10.1103/PhysRevLett.91.232001
[36] Odor, G.: Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76, 663–724 (2004) · Zbl 1205.82102 · doi:10.1103/RevModPhys.76.663
[37] Panja, D.: Effects of fluctuations on propagating fronts. Phys. Rep. 393, 87–174 (2004) · doi:10.1016/j.physrep.2003.12.001
[38] Pechenik, L., Levine, H.: Interfacial velocity corrections due to multiplicative noise. Phys. Rev. E 59, 3893–3900 (1999) · doi:10.1103/PhysRevE.59.3893
[39] Peliti, L.: In: Lectures at the Summer College on Frustrated Systems (1997). cond-mat/9712027
[40] Slack, R.S.: A branching process with mean one and possibly infinite variance. Probab. Theory Relat. Fields 9, 139–145 (1968) · Zbl 0164.47002
[41] Snyder, R.: How demographic stochasticity can slow biological invasions. Ecology 84, 1333–1339 (2003) · doi:10.1890/0012-9658(2003)084[1333:HDSCSB]2.0.CO;2
[42] Steinsaltz, D., Evans, S.: Quasistationary distributions for one-dimensional diffusions with killing. Am. Math. Soc. 359, 1285–1324 (2005) · Zbl 1107.60048 · doi:10.1090/S0002-9947-06-03980-8
[43] van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003) · Zbl 1042.74029 · doi:10.1016/j.physrep.2003.08.001
[44] Wegner, F.: In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 6. Academic Press, San Diego (1976)
[45] Yaglom, M.: Certain limit theorems of the theory of branching random processes. Rep. Acad. Sci. USSR 56, 795–798 (1947)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.