zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-agent single machine scheduling. (English) Zbl 1144.90375
Summary: We consider the scheduling problems arising when several agents, each owning a set of nonpreemptive jobs, compete to perform their respective jobs on one shared processing resource. Each agent wants to minimize a certain cost function, which depends on the completion times of its jobs only. The cost functions we consider in this paper are maximum of regular functions (associated with each job), number of late jobs and total weighted completion time. The different combinations of the cost functions of each agent lead to various problems, whose computational complexity is analysed in this paper. In particular, we investigate the problem of finding schedules whose cost for each agent does not exceed a given bound for each agent.

90B35Scheduling theory, deterministic
68M20Performance evaluation of computer systems; queueing; scheduling
Full Text: DOI
[1] Agnetis, A., P.B. Mirchandani, D. Pacciarelli, and A. Pacifici. (2004). ”Scheduling Problems with Two Competing Agents.” Operations Research, 52(2), 229--242. · Zbl 1165.90446 · doi:10.1287/opre.1030.0092
[2] Arbib, C., S. Smriglio, and M. Servilio. (2004). ”A Competitive Scheduling Problem and its Relevance to UMTS Channel Assignment.” Networks, 44(2), 132--141. · Zbl 1055.90031 · doi:10.1002/net.20023
[3] Baker, K.R. J.C. Smith. (2003). ”A Multiple-Criterion Model for Machine Scheduling.” Journal of Scheduling, 6(1), 7--16. · Zbl 1154.90406 · doi:10.1023/A:1022231419049
[4] Brewer, P.J. and C.R. Plott (1996). ”A Binary Conflict Ascending Price (BICAP) Mechanism for the Decentralized Allocation of the Right to Use Railroad Tracks.” International Journal of Industrial Organization, 14, 857--886. · doi:10.1016/0167-7187(96)01014-4
[5] Chen, Y., Y. Peng, T. Finin, Y. Labrou, S. Cost, B. Chu, J. Yao’, R. Sun, and B. Wilhelm. (1999). ”A Negotiation-Based Multi-Agent System for Supply Chain Management.” In Proc. of the Agents’99 Workshop ”Agent-Based Decision-Support for Managing the Internet-Enabled Supply-Chain,” Seattle, WA, pp. 15--20.
[6] Conway, R.W., W.L. Maxwell, and L.W. Miller. (1967). Theory of Scheduling. Reading, MA: Addison Wesley. · Zbl 1058.90500
[7] Huang, X. and J.C. Hallam. (1995). ”Spring-Based Negotiation for Conflict Resolution in AGV Scheduling.” In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics.
[8] Kim, K., B.C. Poulon, C.J. Petrie, and V.R. Lesser. (2000). ”Compensatory Negotiation for Agent-Based Project Schedule Coordination.” CIFE Working Paper #55. Stanford University.
[9] Lawler, E.L. (1973). ”Optimal Sequencing of a Single Machine Subject to Precedence Constraints.” Management Science, 19, 544--546. · Zbl 0254.90039 · doi:10.1287/mnsc.19.5.544
[10] Moore, J.M. (1968). ”An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs.” Management Science, 15, 102--109. · Zbl 0164.20002 · doi:10.1287/mnsc.15.1.102
[11] Osborne, M.J. and A. Rubinstein. (1994). A Course in Game Theory. Cambridge: MIT Press. · Zbl 1194.91003
[12] T’kindt, V. and J.C. Billaut. (2002). Multicriteria Scheduling. Berlin: Springer-Verlag.