×

Optimality and duality for invex nonsmooth multiobjective programming problems. (English) Zbl 1144.90477

Summary: We consider nonsmooth multiobjective programming problems with inequality and equality constraints involving locally Lipschitz functions. Several sufficient optimality conditions under various (generalized) invexity assumptions and certain regularity conditions are presented. In addition, we introduce a Wolfe-type dual and Mond-Weir-type dual and establish duality relations under various (generalized) invexity and regularity conditions.

MSC:

90C29 Multi-objective and goal programming
49J52 Nonsmooth analysis
49N15 Duality theory (optimization)
90C46 Optimality conditions and duality in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ansari QH, Rivista di Matematica per le Scienze Economiche e Sociali 22 pp 31– (1999)
[2] Clarke FH, Optimization and Nonsmooth Analysis, Wiley-Interscience (1983)
[3] Egudo RR, Technical Report M-888, Florida State University (1993)
[4] Giorgi G, Generalized Convexity, Generalized Monotonicity: Recent Results pp pp. 389–405– (1998)
[5] DOI: 10.1017/S0334270000007372 · Zbl 0773.90061
[6] Kaul RN, J. Inform. Optim. Sci. 15 pp 1– (1994)
[7] DOI: 10.1023/A:1017570023018 · Zbl 1017.90099
[8] DOI: 10.1023/A:1017596530143 · Zbl 0987.90072
[9] Kuk H, Indian J. Pure Appl. Math. 29 pp 405– (1998)
[10] DOI: 10.1006/jmaa.2001.7586 · Zbl 0989.90117
[11] Lee GM, J. Inform. Optim. Sci. 15 pp 127– (1994)
[12] DOI: 10.1006/jmaa.1996.0341 · Zbl 0856.90107
[13] DOI: 10.1023/A:1022667432420 · Zbl 0886.90122
[14] Mangasarian OL, Nonlinear Programming, McGraw-Hill Book Company (1969)
[15] DOI: 10.1017/S0334270000000515 · Zbl 0858.90111
[16] Mond B, Generalized Concavity in Optimization and Economics pp pp. 263–279– (1981)
[17] DOI: 10.1023/A:1024698418606 · Zbl 1142.90483
[18] Sawaragi Y, Theory of Multiobjective Optimization, Academic Press (1985) · Zbl 0566.90053
[19] DOI: 10.1007/BF00938820 · Zbl 0593.90071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.