zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Detecting highly oscillatory signals by chirplet path pursuit. (English) Zbl 1144.94003
The paper deals with the problem of detecting one-dimensional highly oscillatory signals, named chirps, from very noisy measurements. The proposed detection strategy exploits a family of multiscale chirplets, i.e. templates which provide good local approximations of chirps, and uses a chirplet graph to chain chirplets together adaptively as to form a signal which is physically meaningful, and whose correlation with the data is largest. This is achieved by finding the best path in the chirplet graph which maximizes a test statistic based on the weighted sum of squares of the empirical correlation coefficients, and can be accomplished by dynamic programming method; particularly using ChirpLab - the developed and publicly available Matlab software package. To demonstrate the performance of the method, extensive simulation study is provided. The numerical experiments show that the approach ensures high flexibility and adaptivity to the unknown structures of broad classes of nonstationary signals.

94A13Detection theory
65T99Numerical methods in Fourier analysis
42C15General harmonic expansions, frames
Full Text: DOI arXiv
[1] Abramovici, A.; Althouse, W. E.; Drever, R. W. P.; Gursel, Y.; Kawamura, S.; Raab, F. J.; Shoemaker, D.; Sievers, L.; Spero, R. E.; Thorne, K. S.: LIGO --- the laser interferometer gravitational-wave observatory. Science 256, 325-333 (1992)
[2] Ahuja, R. K.; Magnanti, T. L.; Orlin, J. B.: Network flows. Theory, algorithms and applications. (1993) · Zbl 1201.90001
[3] B. Allen, Gravitational radiation analysis and simulation package (GRASP), Technical report, Department of Physics, University of Wisconsin, Milwaukee, P.O. Box 413, Milwaukee, WI 53201, 2000. Available at http://www.lsc-group.phys.uwm.edu/ allen/grasp-distribution/index.html
[4] Anderson, W. G.; Balasubramanian, R.: Time -- frequency detection of gravitational waves. Phys. rev. D (Particles, fields, gravitation, and cosmology) 60, No. 10 (1999)
[5] Arias-Castro, E.; Candès, E. J.; Helgason, H.; Zeitouni, O.: Searching for a trail of evidence in a maze. (2007) · Zbl 1143.62006
[6] Arias-Castro, E.; Donoho, D. L.; Huo, X.: Near-optimal detection of geometric objects by fast multiscale methods. IEEE trans. Inform. theory 51, No. 7, 2402-2425 (2005) · Zbl 1282.94014
[7] Arias-Castro, E.; Donoho, D. L.; Huo, X.: Adaptive multiscale detection of filamentary structures in a background of uniform random points. Ann. statist. 34, No. 1 (2006) · Zbl 1091.62095
[8] Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.; Sundararajan, Pranesh A.: Erratum: parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: the nonspinning case. Phys. rev. D (Particles, fields, gravitation, and cosmology) 72, No. 6 (2005)
[9] Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.; Sundararajan, Pranesh A.: Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: the nonspinning case. Phys. rev. D (Particles, fields, gravitation, and cosmology) 71, No. 8 (2005)
[10] Baraniuk, R. G.; Jones, D. L.: Shear madness: new orthonormal bases and frames using chirp functions. IEEE trans. Signal process. 41, No. 12, 3543-3548 (1993) · Zbl 0841.94004
[11] E. J Candès, P. Charlton, H. Helgason, Chirplets: Recovery and detection of chirps, Presentation at the Institute of Pure and Applied Mathematics, 2004 · Zbl 1151.85331
[12] E. J Candès, P. Charlton, H. Helgason, New methods for detecting gravitational waves, 2007 · Zbl 1151.85331
[13] Chassande-Mottin, E.; Flandrin, P.: On the time -- frequency detection of chirps. Appl. comput. Harmon. anal. 6, No. 2, 252-281 (1999) · Zbl 0934.94002
[14] Chassande-Mottin, E.; Pai, A.: Best chirplet chain: near-optimal detection of gravitational wave chirps. Phys. rev. D 73, No. 4, 1-25 (2006)
[15] Dantzig, G. B.; Blattner, W. O.; Rao, M. R.: Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. Theory of graphs, 77-83 (1967) · Zbl 0189.24102
[16] Donoho, D. L.; Huo, X.: Beamlets and multiscale image analysis. Lecture notes comput. Sci. eng. 20, 149-196 (2002) · Zbl 1084.65134
[17] Helliwell, R. A.: Whistlers and related atmospheric phenomena. (1965)
[18] Hulse, R. A.; Taylor, J. H.: Discovery of a pulsar in a binary system. Astrophys. J. 195, L51-L53 (1975)
[19] Ingster, Y. I.; Suslina, I. A.: Nonparametric goodness-of-fit testing under Gaussian models. Lecture notes in statist. 169 (2003) · Zbl 1013.62049
[20] Innocent, J. M.; Torresani, B.: Wavelets and binary coalescences detection. Appl. comput. Harmon. anal. 4, 113-116 (1997) · Zbl 0864.94010
[21] Joksch, H. C.: The shortest route problem with constraints. J. math. Anal. appl. 14, 191-197 (1966) · Zbl 0135.20506
[22] Mann, S.; Haykin, S.: The chirplet transform: physical considerations. IEEE trans. Signal process. 43, No. 11, 2745-2761 (1995)
[23] Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University lecture series 22 (2001)
[24] Morvidone, M.; Torresani, B.: Time scale approach for chirp detection. Int. J. Wavelets multiresolut. Inf. process. 1, No. 1, 19-49 (2003) · Zbl 1044.94514
[25] Owen, B. J.; Sathyaprakash, B. S.: Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys. rev. D (Particles, fields, gravitation, and cosmology) 60, No. 2 (1999)
[26] Iii, J. E. Reynolds; Rommel, S. A.: Biology of marine mammals. (1999)
[27] Sha’ashua, A.; Ullman, S.: Structural saliency: the detection of globally salient structures using a locally connected network. Proceedings of the second international conference on computer vision, 321-327 (1988)
[28] Simmons, J.: Echolocation in bats: signal processing of echoes for target range. Science 171, No. 974, 925-928 (1971)
[29] Simmons, J.: The resolution of target range by echolocating bats. J. acoust. Soc. amer. 54, 157-173 (1973)
[30] Taylor, J. H.; Fowler, L. A.; Mcculloch, P. M.: Measurements of general relativistic effects in the binary pulsar psr1913 + 16. Nature 277, 437-440 (1979)
[31] Thorne, K. S.: Gravitational radiation. 300 years of gravitation, 330-358 (1987) · Zbl 0966.83515
[32] Westfall, P.; Young, S.: Resampling-based multiple testing: examples and methods for P-value adjustment. (1993) · Zbl 0850.62368