zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the stability of invariant sets of systems with impulse effect. (English) Zbl 1145.34032
The stability of invariant sets of systems with impulse effect are investigated. The authors introduce the main definitions and prove a theorem on uniform asymptotic stability. Also prove a fundamental result on the conversion of the theorem about uniform asymptotic stability. The stability of invariant sets of periodic systems is discussed.

MSC:
34D20Stability of ODE
34A37Differential equations with impulses
WorldCat.org
Full Text: DOI
References:
[1] Angelova, J.; Dishliev, A.: Optimization problems for one-impulsive models from population dynamics, Nonlinear anal. 39, 483-497 (2000) · Zbl 0942.34010 · doi:10.1016/S0362-546X(98)00216-8
[2] Angelova, J.; Dishliev, A.; Nenov, S.: Comparison of zero-solutions of systems ODE via asymptotical stability, Nonlinear anal. 42, 339-350 (2000) · Zbl 0963.34035 · doi:10.1016/S0362-546X(98)00349-6
[3] Bainov, D. D.; Simeonov, P. S.: Systems with impulse effect: stability, theory and applications, (1989) · Zbl 0683.34032
[4] Bainov, D. D.; Simeonov, P. S.: Impulsive differential equations: asymptotic properties of the solutions, (1995) · Zbl 0828.34002
[5] Bhat, S. P.; Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability, Math. control signals systems 17, No. 2, 101-127 (2005) · Zbl 1110.34033 · doi:10.1007/s00498-005-0151-x
[6] Borysenko, S. D.; Ciarletta, M.; Iovane, G.: Integro-sum inequalities and motion stability of systems with impulse perturbations, Nonlinear anal. 62, 417-428 (2005) · Zbl 1087.34003 · doi:10.1016/j.na.2005.03.032
[7] Burton, T. A.: Uniform asymptotic stability in functional differential equations, Proc. amer. Math. soc. 68, 195-199 (1978) · Zbl 0378.34058 · doi:10.2307/2041771
[8] Burton, T. A.; Hatvani, L.: On nonuniform asymptotic stability for nonautonomous functional-differential equations, Differential integral equations 3, 285-293 (1974) · Zbl 0736.34068
[9] Burton, T. A.; Hatvani, L.: Stability theorems for nonautonomous functional-differential equations by Liapunov fuctionals, Tõhoku math. J. 41, 65-104 (1989) · Zbl 0677.34060 · doi:10.2748/tmj/1178227868
[10] Cabada, A.; Liz, E.: Discontinuous impulsive differential equations with nonlinear boundary conditions, Nonlinear anal. 28, 1491-1497 (1997) · Zbl 0878.34009 · doi:10.1016/S0362-546X(96)00016-8
[11] Chellaboina, V.; Bhat, S. P.; Haddad, W. M.: An invariance principle for nonlinear hybrid and impulsive dynamical systems, Nonlinear anal. 53, 527-550 (2003) · Zbl 1082.37018 · doi:10.1016/S0362-546X(02)00316-4
[12] Corduneanu, C.: Some problems concerning partial stability, , 141-154 (1971) · Zbl 0223.34047
[13] Corduneanu, C.: On partial stability for delay systems, Ann. polon. Math. 29, 357-362 (1975) · Zbl 0322.34055
[14] Gelig, A. K.; Churilov, A. N.: Stability and oscillations of nonlinear pulse-modulated systems, (1998) · Zbl 0935.93001
[15] Guan, Z. -H.; Lam, J.; Chen, G.: On impulsive autoassociative neural networks, Neural netw. 13, 63-69 (2000)
[16] Gurgula, S. I.; Perestyuk, N. A.: On stability of the equilibrium in impulse systems, Mat. fiz. 31, 9-14 (1982) · Zbl 0486.34040
[17] Haddad, W. M.; Chellaboina, V.; Kablar, N. A.: Non-linear impulsive dynamical systems. Part I: Stability and dissipativity, Internat. J. Control 74, No. 17, 1631-1658 (2001) · Zbl 1051.93089 · doi:10.1080/00207170110081705
[18] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G.: Hybrid nonnegative and compartmental dynamical systems, Math. prob. Eng. 8, No. 6, 493-515 (2002) · Zbl 1049.34062 · doi:10.1080/1024123021000066426
[19] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G.: Impulsive and hybrid dynamical systems: stability, dissipativity, and control, (2006) · Zbl 1114.34001
[20] Hatvani, L.: On the asymptotic stability of nonautonomous functional differential equations by Lyapunov functionals, Trans. amer. Math. soc. 354, 3555-3571 (2002) · Zbl 1008.34067 · doi:10.1090/S0002-9947-02-03029-5
[21] Hu, S.; Lakshmikantham, V.: Periodic boundary value problems for second order impulsive differential systems, Nonlinear anal. 13, 75-87 (1989) · Zbl 0712.34033 · doi:10.1016/0362-546X(89)90036-9
[22] Ignat’ev, A. O.; Ignat’ev, O. A.; Soliman, A. A.: Asymptotic stability and instability of the solutions of systems with impulse action, Math. notes 80, No. 4, 491-499 (2006) · Zbl 1125.34036 · doi:10.1007/s11006-006-0167-7
[23] Ignatyev, A. O.: Partial stability under persistent disturbances, Izv. vyssh. Uchebn. zaved. Mat. 2, No. 345, 55-60 (1991)
[24] Ignatyev, A. O.: Application of the direct method of Lyapunov to the analysis of integral sets, Ukrainian math. J. 44, 1229-1235 (1992)
[25] Ignatyev, A. O.: On the existence of Lyapunov functions in problems of stability of integral sets, Ukrainian math. J. 45, 1031-1041 (1993) · Zbl 0808.34058 · doi:10.1007/BF01057450
[26] Kaul, S. K.; Liu, X.: Generalized variation of parameters and stability of impulsive systems, Nonlinear anal. 40, 295-307 (2000) · Zbl 0987.34006 · doi:10.1016/S0362-546X(00)85017-8
[27] Kenzhebaev, K. K.; Stanzhitskii, A. N.: Invariant sets of impulsive systems and their stability, Nonlinear oscil. 7, 78-82 (2004) · Zbl 1100.34507
[28] Kou, C.; Zhang, S.; Wu, S.: Stability analysis in terms of two measures for impulsive differential equations, J. London math. Soc. 66, No. 2, 142-152 (2002) · Zbl 1026.34013 · doi:10.1112/S0024610702003277
[29] Kulev, G. K.; Bainov, D. D.: Global stability of sets for impulsive differential systems by Lyapunov’s direct method, Comput. math. Appl. 19, No. 2, 17-28 (1990) · Zbl 0695.34053 · doi:10.1016/0898-1221(90)90003-3
[30] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[31] Lakshmikantham, V.; Leela, S.; Kaul, S.: Comparison principle for impulsive differential equations with variable times and stability theory, Nonlinear anal. TMA 22, 499-503 (1994) · Zbl 0797.34058 · doi:10.1016/0362-546X(94)90170-8
[32] Lakshmikantham, V.; Liu, X.: On quasi stability for impulsive differential systems, Nonlinear anal. TMA 13, 819-829 (1989) · Zbl 0688.34032 · doi:10.1016/0362-546X(89)90074-6
[33] Malkin, I. G.: Stability of motion, (1966)
[34] Matarazzo, G.; Perestyuk, N.; Chernikova, O.: Stability of sets for impulsive differential systems, Miskolc math. Notes 5, No. 2, 193-201 (2004) · Zbl 1150.34495
[35] Michel, A. N.; Molchanov, A. P.; Sun, Y.: Partial stability and boundedness of discontinuous dynamical systems, Nonlinear stud. 9, No. 3, 225-247 (2002) · Zbl 1032.34052
[36] Michel, A. N.; Molchanov, A. P.; Sun, Y.: Partial stability and boundedness of general dynamical systems on metric spaces, Nonlinear anal. 52, 1295-1316 (2003) · Zbl 1035.37008 · doi:10.1016/S0362-546X(02)00167-0
[37] Nenov, S. I.: Impulsive controllability and optimization problems in population dynamics, Nonlinear anal. 36, 881-890 (1999) · Zbl 0941.49021 · doi:10.1016/S0362-546X(99)00627-6
[38] Peiffer, K.; Rouche, N.: Liapunov’s second method applied to partial stability, J. mecanique 6, 20-29 (1969) · Zbl 0206.09806
[39] Perestyuk, N. A.; Chernikova, O. S.: On the stability of integral sets of impulsive differential systems, Miskolc math. Notes 2, No. 1, 49-60 (2001) · Zbl 1012.34043
[40] Perestyuk, N. A.; Chernikova, O. S.: On the stability of invariant sets of discontinuous dynamical systems, Ukrainian math. J. 53, 91-98 (2001) · Zbl 0992.34036 · doi:10.1023/A:1010492901900
[41] Perestyuk, N. A.; Chernikova, O. S.: On stability of integral sets of impulsive differential systems, Ukrainian math. J. 54, 306-315 (2002) · Zbl 1015.34042 · doi:10.1023/A:1020146815128
[42] Rouche, N.; Habets, P.; Laloy, M.: Stability theory by Liapunov’s direct method, (1977) · Zbl 0364.34022
[43] Rumyantsev, V. V.; Oziraner, A. S.: Stability and stabilization with respect to part of variables, (1987) · Zbl 0626.70021
[44] Samoilenko, A. M.: Elements of the mathematical theory of multifrequency vibrations, (1987)
[45] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[46] Savchenko, A. Ya.; Ignatyev, A. O.: Some stability problems of nonautonomous dynamic systems, (1989) · Zbl 0717.34002
[47] Simeonov, P. S.; Bainov, D. D.: Stability with respect to part of the variables in systems with impulse effect, J. math. Anal. appl. 117, No. 1, 247-263 (1986) · Zbl 0588.34044 · doi:10.1016/0022-247X(86)90259-3
[48] Smith, R. J.; Wahl, L. M.: Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects, Bull. math. Biol. 66, 1259-1283 (2004)
[49] Soliman, A. A.: On stability of perturbed impulsive differential systems, Appl. math. Comput. 133, 105-117 (2002) · Zbl 1030.34043 · doi:10.1016/S0096-3003(01)00225-9
[50] Vorotnikov, V. I.: Partial stability and control, (1998) · Zbl 0891.93004
[51] Wang, Z.; Sun, J.: On impulsive dynamic systems, Impuls. dyn. Syst. appl. 3, 114-119 (2005)
[52] Yoshizawa, T.: Stability theory and the existence of periodic solutions and almost periodic solutions, (1975) · Zbl 0304.34051
[53] Zhang, X.; Shuai, Z.; Wang, K.: Optimal impulsive harvesting policy for single population, Nonlinear anal. RWA 4, 639-651 (2003) · Zbl 1011.92052 · doi:10.1016/S1468-1218(02)00084-6
[54] Zhang, Y.; Liu, B.; Chen, L.: Extinction and permanence of a two-prey one-predator system with impulsive effect, Math. med. Biol. 20, 309-325 (2003) · Zbl 1046.92051 · doi:10.1093/imammb/20.4.309