Cherfils, Laurence; Miranville, Alain Some results on the asymptotic behavior of the Caginalp system with singular potentials. (English) Zbl 1145.35042 Adv. Math. Sci. Appl. 17, No. 1, 107-129 (2007). The authors consider the following system of partial differential equations in a bounded smooth domain \(\Omega\) of \(\mathbb{R}^3\) \[ \delta\partial_t\varphi- \Delta_x\varphi+ f(\varphi)- u= g, \]\[ \varepsilon\partial_t u+\partial_t\varphi- \Delta_x u= 0, \]\[ {\partial u\over\partial n}\Biggl|_{\partial\Omega}= {\partial\varphi\over\partial n}\Biggl|_{\partial\Omega}= 0,\quad \varphi\Biggl|_{t= 0}= \varphi_0,\;u\Biggl|_{t= 0}= u_0, \] where \(0<\varepsilon< 1\), \(\delta> 0\). The authors are mainly interested in the study of finite-dimensional attractors and the convergence of solutions to steady states. Reviewer: Messoud A. Efendiev (Berlin) Cited in 30 Documents MSC: 35B41 Attractors 35B40 Asymptotic behavior of solutions to PDEs 80A22 Stefan problems, phase changes, etc. Keywords:Łojasiewicz-Simon inequality; long-time dynamics PDF BibTeX XML Cite \textit{L. Cherfils} and \textit{A. Miranville}, Adv. Math. Sci. Appl. 17, No. 1, 107--129 (2007; Zbl 1145.35042) OpenURL