Yomba, Emmanuel The extended \(F\)-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations. (English) Zbl 1145.35455 Phys. Lett., A 340, No. 1-4, 149-160 (2005). Summary: By using a simple transformation technique, we have shown that the nonlinear wave equation, the coupled Klein-Gordon-Zakharov (CKGZ) equations, the generalized Davey-Stewartson (GDS) equations, the Davey-Stewartson (DS) equations, the generalized Zakharov (GZ) equations can be reduced to the elliptic-like equation. Then, the extended \(F\)-expansion method is used to obtain a series of solutions including the single and the combined nondegenerative Jacobi elliptic function solutions and their degenerative solutions to the above mentioned class of NLPDEs. Cited in 25 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35Q40 PDEs in connection with quantum mechanics 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics PDF BibTeX XML Cite \textit{E. Yomba}, Phys. Lett., A 340, No. 1--4, 149--160 (2005; Zbl 1145.35455) Full Text: DOI References: [1] Peng, Y. Z., Chin. J. Phys., 41, 103 (2003) [2] Peng, Y. Z., Phys. Lett. A, 314, 401 (2003) [3] Zhou, Y.; Wang, M.; Wang, Y., Phys. Lett. A, 308, 31 (2003) [4] Yomba, E., Chaos Solitons Fractals, 21, 209 (2004) [5] Liu, J.; Yang, L.; Yang, K., Chaos Solitons Fractals, 20, 1157 (2004) [6] Shen, S.; Pan, Z.; Zhang, J.; Cai’er, Y., Phys. Lett. A, 325, 226 (2004) [7] Peng, Y. Z., J. Phys. Soc. Jpn., 72, 1356 (2003) [8] Fu, Z.; Zhang, L.; Liu, S.; Liu, S., Phys. Lett. A, 325, 363 (2004) [9] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 289, 69 (2001) [10] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 290, 72 (2001) [11] Parkes, E. J.; Duffy, B. R.; Abott, P. C., Phys. Lett. A, 295, 280 (2002) [12] Liu, J.; Yang, K., Chaos Solitons Fractals, 22, 111 (2004) [13] Wang, M.; Li, X., Chaos Solitons Fractals, 24, 1257 (2005) [14] Elwakil, S. A.; El-labany, S. K., Phys. Lett. A, 299, 179 (2002) [15] Ablowitz, M.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0762.35001 [16] Zhou, Y.; Wang, M.; Miao, T., Phys. Lett. A, 323, 77 (2004) [17] Davey, A.; Stewartson, K., Proc. R. Soc. London A, 338, 101 (1974) [18] Malomed, B.; Anderson, D., Phys. Rev. E, 55, 962 (1997) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.