×

On solutions of functional-integral equations of Urysohn type on an unbounded interval. (English) Zbl 1145.45301

Summary: We establish the existence of solutions of functional-integral and quadratic Urysohn integral on the interval \(\mathbb R_+=[0,\infty)\). The technique of proving applied in this paper is based on the concept of measure of noncompactness and the fixed point theorem. Some new results are given.

MSC:

45G10 Other nonlinear integral equations
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P., Difference Equations and Inequalities (2000), Dekker: Dekker New York · Zbl 1006.00501
[2] Agarwal, R. P.; O’Regan, D.; Wong, P. J.Y., Positive Solutions of Differential, Difference and Integral Equations (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0923.39002
[3] J. Banaś, L. Olszowy, On solutions of a quadratic Urysohn integral equation on an unbounded interval, Dynam. Systems. Appl. (in press); J. Banaś, L. Olszowy, On solutions of a quadratic Urysohn integral equation on an unbounded interval, Dynam. Systems. Appl. (in press) · Zbl 1156.45002
[4] Banaś, J.; Goebel, K., (Measures of Noncompactness in Banach Spaces. Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., vol. 60 (1980), Marcel Dekker: Marcel Dekker New York, Basel) · Zbl 0441.47056
[5] Burton, T. A., Volterra Integral and Differential Equations (1983), Academic Press: Academic Press New York · Zbl 0515.45001
[6] Busbridge, L. W., The Mathematics of Radiative Transfer (1960), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0090.21405
[7] Cahlon, B.; Eskin, B., Existence theorems for an integral equation of the Chandrasekhar \(H\)-equation with perturbation, J. Math. Anal. Appl., 83, 159-171 (1981) · Zbl 0471.45002
[8] Case, K. M.; Zweifel, P. F., Linear Transport Theory (1967), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0132.44902
[9] Chandrasekhar, S., Radiative Transfer (1950), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0037.43201
[10] Corduneanu, C., Integral Equations and Applications (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0714.45002
[11] Deimling, K., Nonlinear Functional Analysis (1985), Springer Verlag: Springer Verlag Berlin · Zbl 0559.47040
[12] Hu, S.; Khavanin, M.; Zhuang, W., Integral equations arising in the kinetic theory of gases, Appl. Anal., 34, 261-266 (1989) · Zbl 0697.45004
[13] Liu, L.; Guo, F.; Wu, C.; Wu, Y., Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309, 638-649 (2005) · Zbl 1080.45005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.