zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A discontinuous Galerkin method for the Rosenau equation. (English) Zbl 1145.65071
This paper is concerned with a posteriori error estimates for the Rosenau equation $$u_t+u_{xxxxt}=f(u)_x$$ in $\Omega\times (0,T]$ subject to the boundary conditions $u(x,t)=u_x(x,t)=0$ on $\partial\Omega\times (0,T]$ and $u(x,0)=u_0(x)$, $x\in\overline\Omega$. Here $\Omega=(0,1)$, $f(u)=-u-u^2$ and $T>0$. A posteriori estimates are obtained by using the discontinuous Galerkin method. The stability of the approximated solution is also discussed. Numerical results on a posteriori error and wave propagation are given, which are obtained by using various spatial and temporal meshes controlled automatically by a posteriori error.

65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
65M15Error bounds (IVP of PDE)
35K55Nonlinear parabolic equations
Full Text: DOI
[1] Ainsworth, M.; Oden, J. T.: A posteriori error estimation in finite element analysis. Comp. meth. Appl. mech. Eng. 142, 1-88 (1997) · Zbl 0895.76040
[2] Chung, S. K.; Ha, S. N.: Finite element Galerkin solutions for the rosenau equation. Appl. anal. 54, 39-56 (1994) · Zbl 0830.65097
[3] Chung, S. K.; Pani, A. K.: Numerical methods for the rosenau equation. Appl. anal. 77, 351-369 (2001) · Zbl 1021.65048
[4] Eriksson, K.; Johnson, C.: Adaptive finite element methods for parabolic problem IV: Nonlinear problems. SIAM J. Numer. anal. 32, 1729-1749 (1995) · Zbl 0835.65116
[5] Grasselli, M.; Perotto, S.; Saleri, F.: Space-time finite element approximation of Boussinesq equations. East-west J. Numer. math. 7, 283-306 (1999) · Zbl 0948.65100
[6] Lee, H. Y.; Ahn, M. J.: The convergence of the fully discrete solution for the rosenau equation. Comp. math. Appl. 32, 15-22 (1996) · Zbl 0857.65103
[7] Park, M. A.: Pointwise decay estimates of solutions of the generalized rosenau equation. J. of korean math. Soc. 29, 261-280 (1992) · Zbl 0808.35020
[8] Park, M. A.: On the rosenau equation in multidimensional space. Nonlinear anal., T.M.A. 21, 77-85 (1993) · Zbl 0811.35142
[9] Rosenau, P.: Dynamics of dense discrete systems. Prog. theoret. Phys. 79, 1028-1042 (1988)