×

Error estimates for the finite point method. (English) Zbl 1145.65086

An error estimate for the finite point method is shown. Numerical experiments are shown for a 2D elliptic problem on a square domain.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aluru, N. R., A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Engrg., 47, 1083-1121 (2000) · Zbl 0960.74078
[2] Aluru, N. R.; Li, G., Finite cloud methods: a true meshless technique based on a fixed reproducing kernel approximation, Int. J. Numer. Methods Engrg., 50, 10, 2373-2410 (2001) · Zbl 0977.74078
[3] Atluri, S. N.; Shen, S., The Meshless Local Petro-Galerkin (MLPG) Method (2002), Tech Science Press: Tech Science Press Stuttgart · Zbl 1012.65116
[4] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) · Zbl 0932.76067
[5] Babuska, I.; Banerjee, U.; Osborn, J., Meshless and Generalized Finite Element Method: A Survey of Major Results, Lecture Notes in Computational Science and Engineering (2002), Springer: Springer New York · Zbl 1012.65119
[6] Babuska, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[7] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless method: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[8] Belytschko, T.; Lu, Y.; Gu, L., Element free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[9] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer: Springer New York · Zbl 0804.65101
[10] Chen, J. S.; Pan, C.; Wu, C.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of non-linear structures, Methods Appl. Mech. Engrg., 139, 195-227 (1996) · Zbl 0918.73330
[11] Chen, W., New RBF collocation methods and kernel RBF with applications, (Griebel, M.; Schweitzer, M. A., Meshfree Methods for Partial Differential Equations, vol. 1 (2000), Springer-Verlag: Springer-Verlag New York) · Zbl 1016.65094
[12] Cheng, Y.; Chen, M., A boundary element-free method for elasticity, Acta Mech. Sinica, 35, 2, 181-186 (2003), (in Chinese)
[13] Cheng, Y.; Peng, M., Boundary element-free method for elastodynamics, Sci. China Ser. G, 48, 6, 641-657 (2005)
[14] Duarte, M.; Oden, J. T., An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996) · Zbl 0918.73328
[16] Fausshauer, G. E., Approximate moving least-square approximation with compactly supported radial weights, (Lecture Notes in Computational Science and Engineering, vol. 26 (2002), Springer: Springer New York), 105-116 · Zbl 1014.65014
[17] Golub, G. H.; Van Loan, C. F., Matrix Computations (1989), Johns Hopkins University Press: Johns Hopkins University Press Baltimore and London · Zbl 0733.65016
[18] Han, W. M.; Meng, X. P., Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Engrg., 190, 6157-6181 (2001) · Zbl 0992.65119
[19] Jin, X. Z.; Li, G.; Aluru, N. R., Positivity conditions in meshless collocation methods, Comp. Methods Appl. Mech. Engrg., 193, 1171-1202 (2004) · Zbl 1060.74667
[20] Jin, X.; Li, G.; Aluru, N. R., On the equivalence between least-squares and kernel approximation in meshless methods, CMES: Comput. Model. Engrg. Sci., 2, 4, 447-462 (2001) · Zbl 0996.65118
[21] Kitipornchai, S.; Liew, K. M.; Cheng, Y., A boundary element-free method (BEFM) for three-dimensional elasticity problems, Comput. Mech., 36, 13-20 (2005) · Zbl 1109.74372
[22] Liu, W. K.; Han, W. M., Reproducing kernel element method. Part I: Theoretical formulation, Comput. Methods Appl. Mech. Engrg., 193, 933-951 (2004) · Zbl 1060.74670
[23] Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. Numer. Methods Engrg., 38, 1655-1679 (1995) · Zbl 0840.73078
[24] Liszka, T. J.; Duarte, C. A.; Tworzydlo, W. W., hp-meshless cloud method, Comput. Methods Appl. Mech. Engrg., 139, 263-288 (1996) · Zbl 0893.73077
[25] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares methods, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005
[26] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I). Methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 113-154 (1997) · Zbl 0883.65088
[27] Melenk, J. M.; Babuska, I., The partition of unity method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[28] Monaghan, J. J., Why particle methods work, SIAM J. Sci. Stat. Comput., 3, 422-433 (1982) · Zbl 0498.76010
[29] Monaghan, J. J., An introduction to SPH, Comput. Phys. Comm., 48, 89-96 (1988) · Zbl 0673.76089
[30] Mukherjee, Y. X.; Mukherjee, S., The boundary node method for potential problems, Int. J. Numer. Methods Engrg., 14, 315-323 (1995)
[31] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[32] Onate, E.; Idelsohn, S., A finite point method for elasticity problems, Computers and Structures, 79, 2151-2163 (2001)
[33] Onate, E.; Idelson, S.; Zienkiewicz, O. C.; Taylor, R. L., A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Engrg., 39, 3839-3866 (1996) · Zbl 0884.76068
[34] Onate, E.; Idelson, S.; Zienkiewicz, O. C.; Taylor, R. L., A stabilized finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow, Int. J. Numer. Methods Engrg., 39, 315-346 (1996) · Zbl 0894.76065
[35] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Engrg., 54, 1623-1648 (2002) · Zbl 1098.74741
[36] Zhang, J.; Yao, Z.; Li, H., A hybrid boundary node method, Int. J. Numer. Methods Engrg., 53, 751-763 (2002)
[37] Zhu, T.; Zhang, J.; Atluri, S. N., A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Comput. Mech., 22, 174-186 (1998) · Zbl 0924.65105
[38] Zuppa, C., Error estimates for moving least-square approximations, Bull Braz. Math. Soc. (N.S.), 34, 231-249 (2003) · Zbl 1056.41007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.