He, Yinnian; Xu, Jinchao; Zhou, Aihui; Li, Jian Local and parallel finite element algorithms for the Stokes problem. (English) Zbl 1145.65097 Numer. Math. 109, No. 3, 415-434 (2008). Some local and parallel finite element algorithms for the Stokes problem are proposed and analyzed. In addition to the well-known ideas of multigrid algorithms, local properties of finite element solutions are used that are known from the study of pollution effects. Let \(D\subset\subset \Omega_0\subset \Omega\). The approximation properties in \(D\) depend less on the meshsize in \(\Omega\setminus \Omega_0\) than on the meshsize in \(\Omega_0\). This is helpful in the analyisis of local refinements or parallel iterations on subdomains. Reviewer: Dietrich Braess (Bochum) Cited in 79 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs 65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs 35Q30 Navier-Stokes equations 76D07 Stokes and related (Oseen, etc.) flows 76M10 Finite element methods applied to problems in fluid mechanics 65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs 65Y05 Parallel numerical computation Keywords:Stokes problem; local estimates; parallel algorithms; finite element; multigrid algorithms; local refinements PDF BibTeX XML Cite \textit{Y. He} et al., Numer. Math. 109, No. 3, 415--434 (2008; Zbl 1145.65097) Full Text: DOI References: [1] Adams R. (1975). Sobolev Spaces. Academic Press Inc., New York · Zbl 0314.46030 [2] Arnold D.N., Brezzi F. and Fortin M. (1984). A stable finite element for the Stokes equations. Calc. 21: 337–344 · Zbl 0593.76039 [3] Arnold D.N. and Liu X. (1995). Local error estimates for finite element discretizations of the Stokes equations. RAIRO M2AN 29: 367–389 · Zbl 0832.65117 [4] Bank R.E. and Holst M. (2000). A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput. 22: 1411–1443 · Zbl 0979.65110 [5] Bank R.E. and Holst M. (2003). A new paradigm for parallel adaptive meshing algorithms. SIAM Rev. 45: 291–323 · Zbl 1028.65104 [6] Ciarlet P.G. and Lions J.L. (1991). Handbook of Numerical Analysis,Vol.II, Finite Element Methods (Part I). Elsevier Science Publisher, Amsterdam · Zbl 0712.65091 [7] Crouzeix M. and Raviart P.-A. (1973). Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7(R–3): 33–76 · Zbl 0302.65087 [8] Fortin, M.: Calcul numérique des ecoulements fluides de Bingham et des fluides Newtoniens incompressible par des méthodes d’eléments finis, Université de Paris VI, Doctoral thesis (1972) [9] Girault V. and Raviart P.A. (1986). Finite Element Approximation of the Navier-Stokes Equations–Theory and Algorithms. Springer, Berlin · Zbl 0585.65077 [10] Hood P. and Taylor C. (1973). A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1: 73–100 · Zbl 0328.76020 [11] Ma F., Ma Y. and Wo W. (2007). Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. 28: 27–35 · Zbl 1231.65216 [12] Ma Y., Zhang Z. and Ren C. (2006). Local and parallel finite element algorithms based on two-grid discretization for the stream function from of Navier-Stokes equations. Appl. Math. Comput. 175: 786–813 · Zbl 1087.76068 [13] Mansfield L. (1982). Finite element subspaces with optimal rates of convergence for stationary Stokes problem. RAIRO Anal. Numér. 16: 49–66 · Zbl 0477.65084 [14] Nitsche J. and Schatz A.H. (1974). Interior estimates for Ritz-Galerkin methods. Math. Comp. 28: 937–055 · Zbl 0298.65071 [15] Schatz A.H. and Wahlbin L.B. (1977). Interior maximum-norm estimates for finite element methods. Math. Comp. 31: 414–442 · Zbl 0364.65083 [16] Schatz A.H. and Wahlbin L.B. (1995). Interior maximum-norm estimates for finite element methods, Part II. Math. Comp. 64: 907–928 · Zbl 0826.65091 [17] Shen, L.: Parallel Adaptive Finite Element Algorithms for Electronic Structure Computing Based on Density Functional Theory. PhD Thesis. Academy of Mathematics and Systems Science, Chinese Acade my of Sciences (2005) [18] Temam R. (1984). Navier Stokes Equations. North-Holland, Amsterdam · Zbl 0568.35002 [19] Wahlbin L.B. (1991). Local behavior in finite element methods. In: Ciarlet, P.G. and Lions, J.L. (eds) Handbook of Numerical Analsis. Finite Element Methods (Part I), vol. II, pp 355–522. North-Holland, Amsterdam · Zbl 0875.65089 [20] Wahlbin L.B. (1995). Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Math., vol. 1605. Springer, Heidelberg · Zbl 0826.65092 [21] Xu J. (1992). Iterative methods by space decomposition and subspace correction. SIAM Rev. 34: 581–613 · Zbl 0788.65037 [22] Xu J. (1992). A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29: 303–319 · Zbl 0756.65050 [23] Xu J. (1994). A novel two-grid method for semilinear equations. SIAM J. Sci. Comp. 15: 231–237 · Zbl 0795.65077 [24] Xu J. (1759). Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33: 1759–1777 · Zbl 0860.65119 [25] Xu, J., Zhou, A.: Some local and parallel properties of finite element discretizations. In: Lai, C.H., Bjøsted, P.E., Cross, M., Widlund, O.B. (eds) Procedings of 11th International Conference on DDM DDM.org, pp. 140–147 (1999) [26] Xu J. and Zhou A. (2000). Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp. 69: 881–909 · Zbl 0948.65122 [27] Xu J. and Zhou A. (2001). Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comp. Math. 14: 293–327 · Zbl 0990.65128 [28] Xu J. and Zhou A. (2002). Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18: 85–200 · Zbl 1013.05041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.