zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unsteady flow of a second grade fluid film over an unsteady stretching sheet. (English) Zbl 1145.76317
Summary: In this article, the flow problem in a thin liquid film of second grade fluid over an unsteady stretching surface is investigated. By means of suitable transformations, the governing nonlinear partial differential equation has been reduced to the nonlinear ordinary differential equation. The developed nonlinear equation is solved analytically by using the homotopy analysis method (HAM). An expression for analytic solution is derived in the form of a series. The convergence of the obtained series is shown explicitly through numerical computations. The effects of various parameters on the velocity components are shown through graphs and discussed. The values of the skin-friction coefficient for different emerging parameters are also tabulated.

76A20Thin fluid films (fluid mechanics)
76A05Non-Newtonian fluids
76D08Lubrication theory
Full Text: DOI
[1] Sakiadis, B. C.: Boundary layer behavior on continuous solid surface I: Boundary layer equations for two dimensional and axisymmetric flow, Aiche J. 7, 26-28 (1961)
[2] Sakiadis, B. C.: Boundary layer behaviour on continuous solid surface II: Boundary layer on a continuous flat surface, Aiche J. 7, 221-225 (1961)
[3] Cortell, R.: Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet, Phys. lett. A 357, 298-305 (2006) · Zbl 1236.76087
[4] Cortell, R.: Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing, Fluid dyn. Res. 37, 231-245 (2005) · Zbl 1153.76423 · doi:10.1016/j.fluiddyn.2005.05.001
[5] Cortell, R.: A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet, Appl. math. Comput. 168, 557-566 (2005) · Zbl 1081.76059 · doi:10.1016/j.amc.2004.09.046
[6] Sadeghy, K.; Najafi, A. H.; Saffaripour, M.: Sakiadis flow of an upper-convected Maxwell fluid, Int. J. Non-linear mech. 40, 1220-1228 (2005) · Zbl 05138659
[7] Hayat, T.; Abbas, Z.; Sajid, M.: Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys. lett. A 358, 396-403 (2006) · Zbl 1142.76511 · doi:10.1016/j.physleta.2006.04.117
[8] Hayat, T.; Sajid, M.: Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. Heat mass transfer 50, 75-84 (2007) · Zbl 1104.80006 · doi:10.1016/j.ijheatmasstransfer.2006.06.045
[9] Liao, S.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J. fluid mech. 488, 189-212 (2003) · Zbl 1063.76671 · doi:10.1017/S0022112003004865
[10] Xu, H.: An explicit analytic solution for convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. sci. 43, 859-874 (2005) · Zbl 1211.76159 · doi:10.1016/j.ijengsci.2005.01.005
[11] Wang, C. Y.: Liquid film on an unsteady stretching surface, Quart. appl. Math. 48, 601-610 (1990) · Zbl 0714.76036
[12] Usha, R.; Sridharan, R.: On motion of a liquid film on an unsteady stretching surface, ASME fluids eng. 150, 43-48 (1993)
[13] Andersson, H. I.; Aarseth, J. B.; Braud, N.; Dandapat, B. S.: Flow of a power law fluid film on an unsteady stretching surface, J. non-Newtonian fluid mech. 62, 1-8 (1996)
[14] Andersson, H. I.; Aarseth, J. B.; Dandapat, B. S.: Heat transfer in a liquid film on an unsteady stretching surface, Int. J. Heat mass transfer 43, 69-74 (2000) · Zbl 1042.76507 · doi:10.1016/S0017-9310(99)00123-4
[15] I.C. Liu, H.I. Andersson, Heat transfer in a liquid film on an unsteady stretching sheet, Int. J. Ther. Sci. (in press)
[16] Chen, C. H.: Heat transfer in a power-law fluid film over a unsteady stretching sheet, Heat mass transfer 39, 791-796 (2003)
[17] Wang, C.: Analytic solutions for a liquid film on an unsteady stretching surface, Heat mass transfer 42, 759-766 (2006)
[18] Wang, C.; Pop, I.: Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method, J. non-Newtonian fluid mech. 138, 161-172 (2006) · Zbl 1195.76132 · doi:10.1016/j.jnnfm.2006.05.011
[19] Liao, S. J.: Beyond perturbation, introduction to homotopy analysis method, (2003)
[20] Liao, S. J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. fluid mech. 385, 101-128 (1999) · Zbl 0931.76017 · doi:10.1017/S0022112099004292
[21] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl. math. Comput. 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[22] Liao, S. J.; Cheung, K. F.: Homotopy analysis of nonlinear progressive waves in deep water, J. eng. Math. 45, 105-116 (2003) · Zbl 1112.76316 · doi:10.1023/A:1022189509293
[23] Liao, S. J.: An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate, Commun. non-linear sci. Numer. simul. 11, 326-339 (2006) · Zbl 1078.76022 · doi:10.1016/j.cnsns.2004.09.004
[24] Liao, S. J.: Comparison between the homotopy analysis method and homotopy perturbation method, Appl. math. Comput. 169, 1186-1194 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[25] Cheng, J.; Liao, S. J.; Pop, I.: Analytic series solution for unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium, Trans. porous media 61, 365-379 (2005)
[26] Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. lett. A 360, 109-113 (2006) · Zbl 1236.80010
[27] Tan, Y.; Abbasbandy, S.: Homotopy analysis method for quadratic recati differential equation, Commun. non-linear sci. Numer. simul. 13, 539-546 (2008) · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[28] Zhu, S. P.: An exact and explicit solution for the valuation of American put options, Qunat. finance 6, 229-242 (2006) · Zbl 1136.91468 · doi:10.1080/14697680600699811
[29] Zhu, S. P.: A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield, Anziam J. 47, 477-494 (2006) · Zbl 1147.91336 · doi:10.1017/S1446181100010087 · http://www.austms.org.au/Publ/ANZIAM/V47P4/2378.html
[30] Wu, Y.; Wang, C.; Liao, S. J.: Solving solitary waves with discontinuity by means of the homotopy analysis method, Choas solitons fractals 26, 177-185 (2005) · Zbl 1071.76009 · doi:10.1016/j.chaos.2004.12.016
[31] Hayat, T.; Khan, M.; Ayub, M.: On the explicit analytic solutions of an Oldroyd 6-constant fluid, Int. J. Eng. sci. 42, 123-135 (2004) · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[32] Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech. 168, 213-232 (2004) · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[33] Sajid, M.; Hayat, T.; Asghar, S.: On the analytic solution of steady flow of a fourth grade fluid, Phys. lett. A 355, 18-24 (2006)
[34] Abbas, Z.; Sajid, M.; Hayat, T.: MHD boundary layer flow of an upper-convected Maxwell fluid in porous channel, Theor. comp. Fluid dyn. 20, 229-238 (2006) · Zbl 1109.76065 · doi:10.1007/s00162-006-0025-y
[35] Hayat, T.; Abbas, Z.; Sajid, M.; Asghar, S.: The influence of thermal radiation on MHD flow of a second grade fluid, Int. J. Heat mass transfer 50, 931-941 (2007) · Zbl 1124.80325 · doi:10.1016/j.ijheatmasstransfer.2006.08.014
[36] Sajid, M.; Hayat, T.; Asghar, S.: Comparison of the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt, Nonlinear dyn. 50, 27-35 (2007) · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y
[37] Allan, F. M.: Derivation of the Adomian decomposition method using the homotopy analysis method, Appl. math. Comput. 190, 6-14 (2007) · Zbl 1125.65063 · doi:10.1016/j.amc.2006.12.074
[38] Inc, M.: On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method, Phys. lett. A 365, 412-415 (2007) · Zbl 1203.65275 · doi:10.1016/j.physleta.2007.01.069
[39] M. Khan, Z. Abbas, T. Hayat, Analytic solution for flow of Sisko fluid through a porous medium, Transp. Porous Media (in press)
[40] Rajagopal, K. R.; Gupta, A. S.: An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate, Meccanica 19, 156-160 (1984) · Zbl 0552.76008 · doi:10.1007/BF01560464
[41] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type -- critical review and thermodynamic analysis, Int. J. Eng. sci. 33, 689-729 (1995) · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X